找到预排序数组中给定值的最低索引

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了找到预排序数组中给定值的最低索引相关的知识,希望对你有一定的参考价值。

嘿,我在接受采访时有这个问题,并想知道解决问题的最佳方法是什么。所以说你得到一个已经排序的数组,你想要找到某个值x的最低索引。

这是我想出的python /伪代码,我只是想知道是否有更好的方法可以解决它?

def findLowestIndex(arr, x):
     index = binarySearch(0, len(arr), x)
     if index != -1:
         while index > 0:
           if arr[index] == arr[index-1]:
              index -= 1
           else:
              break
     return index

谢谢!

答案

在最坏的情况下,您的方法需要线性时间,即当数组中的xs计数为O(n)时。

可以通过更改二进制搜索本身来找到数组中的第一个x而不是其中任何一个来获得O(lg n)解决方案:

def binary_search(x, a):
    lo = 0
    hi = len(a)

    while lo < hi:
        mid = (lo + hi) // 2

        if a[mid] < x:
            lo = mid + 1
        elif a[mid] > x:
            hi = mid
        elif mid > 0 and a[mid-1] == x:
            hi = mid
        else:
            return mid

    return -1
另一答案
import bisect
l = [1,2,3,4,4,4,4,4,5,5,5,5,5,6,6,7,7,7,8,8]
bisect.bisect_left(l, 4)

编辑:我只是想念一件事。 bisect会给你一个插入点。因此,如果x不在列表中,您仍将拥有结果索引。所以你需要先检查x是否在列表中:

if x in l:
    ....

但对于面试问题,他们可能想看看你如何提出算法而不是使用图书馆......

另一答案

如果元素是整数 - 或枚举,你可以更快地做到:

请注意,在二进制搜索[算法,而不是python函数]中,如果元素不存在 - 您可以找到比索引大的最小元素。

  1. 首先搜索x - 并获得索引,让它成为i
  2. 接下来,搜索x-1。如果它不在列表中,二进制搜索可以找到第一个索引,如果x
  3. 如果它在列表中,请将索引发现为j: 在ji的子列表上进行二分查找,并搜索list[k] < list[k+1]这样的元素

对于没有枚举的值,它也可以通过减少范围而list[k] < list[k+1] and list[k+1] == x的相同想法来完成,但我发现首先理解如何对整数进行更简单,然后将其应用于一般解。

请注意,这个解决方案是O(logn),而你提出的简单解决方案是O(n),在列表中有很多欺骗,因为二进制搜索后的迭代步骤。

另一答案

一个递归版本,如果有人感兴趣的话......

来自Algorithms 4th练习的https://github.com/reneargento/algorithms-sedgewick-wayne/blob/master/src/chapter1/section4/Exercise10.java重写。

def binary_search(key, a, low, high):
    if low > high:
        return -1;
    middle = low + (high - low) / 2;
    if a[middle] < key:
        return binary_search(key, a, middle + 1, high)
    elif a[middle] > key:
        return binary_search(key, a, low, middle - 1)
    else:
        if (middle - 1 >= 0) and (a[middle - 1] != key):
            return middle
        else:
            index = binary_search(key, a, 0, middle - 1)
            if(index == -1):
                return middle;
            else:
                return index;

a = [1,2,3,3,3,3,4,5,6,7,7,8,9]

print(binary_search(7, a, 0, len(a)))

递归版本总是看起来比非递归版本更直接吗?为什么这看起来更难......?任何人都可以写一个更好的递归版本:D?

另一答案

如果x不在X这样f(x) = v然后答案是微不足道的:二进制搜索找出来。

如果有一个x这样f(x) = v然后答案也是微不足道的:二进制搜索找出来。

如果x有多个f(x) = v,问题就很有趣了。如果存在恒定数量的x,则在算法上二分搜索是最佳的。只需二元搜索并按顺序检查较低的索引。

但是,如果这些x有很多呢?像这样的顺序搜索显然不是最佳的。事实上,如果有c * |X| x,那么这就是在O(|X|)

相反,可以做的是将lbound初始化为0和二分搜索,直到找到元素,在i,每当你向右走的时候,将lbound更新到刚用过的中间。然后从[lbound, i - 1]二进制搜索。这样做直到i == lbound或你没有找到元素。如果前者发生,所需的指数是0。如果发生后者,则所需的指数是先前使用的i。最糟糕的情况是所需的指数是0

有趣的是,我认为这仍然在log(|X|)时间运行。

另一答案

deferred detection of equality approach in binary search给出了最小的索引,减少了平等分支。

def binary_search(low, high, target, array):
    while low < high:
        mid = low + (high - low) / 2
        if a[mid] < target:
            low = mid + 1
        else:
            high = mid

    if (array[low] == target) return low
    else return -1
另一答案

我敢打赌,g.d.d.c的评论是python的最快答案。否则,您的通用算法是正确的,除了在某些情况下您可以击败二进制搜索的O(log n)行为的事实。具体来说,在整数的情况下,您可以获得的最佳最坏情况行为是O(sqrt(log n)):https://stackoverflow.com/questions/4057258/faster-than-binary-search-for-ordered-list

另一答案

修改二进制搜索以首次查找x的任何出现。

以上是关于找到预排序数组中给定值的最低索引的主要内容,如果未能解决你的问题,请参考以下文章

计数排序与桶排序python实现

python面试题- 二分法查找给定一个已排序的非重复整数数组和一个目标值,如果找到目标,则返回索引。

《程序员代码面试指南》第八章 数组和矩阵问题 不重复打印排序数组中相加和为给定值的所有二元组和三元组

查找两个总和为特定值的索引

c_cpp 给定排序数组和目标值,如果找到目标,则返回索引。如果不是,则返回索引,如果它是inse,则返回它

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。