LSI模型概念
Posted ldphoebe
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了LSI模型概念相关的知识,希望对你有一定的参考价值。
https://www.cnblogs.com/pinard/p/6805861.html
这里我们拍脑门决定训练topic数量为10的LSI模型:(LSI模型 就是设置维度:多少个特征)
>>> lsi = models.LsiModel(corpus_tfidf, id2word=dictionary, num_topics=10)
>>> index = similarities.MatrixSimilarity(lsi[corpus])
2013-06-07 22:04:55,443 : INFO : scanning corpus to determine the number of features
2013-06-07 22:04:55,510 : INFO : creating matrix for 379 documents and 10 features
基于LSI模型的课程索引建立完毕,我们以Andrew Ng教授的机器学习公开课为例,这门课程在我们的coursera_corpus文件的第211行,也就是:
>>> print courses_name[210]
Machine Learning
现在我们就可以通过lsi模型将这门课程映射到10个topic主题模型空间上,然后和其他课程计算相似度:
>>> ml_course = texts[210]
>>> ml_bow = dicionary.doc2bow(ml_course)
>>> ml_lsi = lsi[ml_bow]
>>> print ml_lsi
[(0, 8.3270084238788673), (1, 0.91295652151975082), (2, -0.28296075112669405), (3, 0.0011599008827843801), (4, -4.1820134980024255), (5, -0.37889856481054851), (6, 2.0446999575052125), (7, 2.3297944485200031), (8, -0.32875594265388536), (9, -0.30389668455507612)]
>>> sims = index[ml_lsi]
>>> sort_sims = sorted(enumerate(sims), key=lambda item: -item[1])
取按相似度排序的前10门课程:
>>> print sort_sims[0:10]
[(210, 1.0), (174, 0.97812241), (238, 0.96428639), (203, 0.96283489), (63, 0.9605484), (189, 0.95390636), (141, 0.94975704), (184, 0.94269753), (111, 0.93654782), (236, 0.93601125)]
在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法。本文关注于潜在语义索引算法(LSI)的原理。
1. 文本主题模型的问题特点
在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类。
而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布。
从这个方面来说,主题模型和普通的聚类算法非常的类似。但是两者其实还是有区别的。
聚类算法关注于从样本特征的相似度方面将数据聚类。比如通过数据样本之间的欧式距离,曼哈顿距离的大小聚类等。
而主题模型,顾名思义,就是对文字中隐含主题的一种建模方法。比如从“人民的名义”和“达康书记”这两个词我们很容易发现对应的文本有很大的主题相关度,但是如果通过词特征来聚类的话则很难找出,因为聚类方法不能考虑到到隐含的主题这一块。
那么如何找到隐含的主题呢?
这个一个大问题。常用的方法一般都是基于统计学的生成方法。
即假设以一定的概率选择了一个主题,然后以一定的概率选择当前主题的词。
最后这些词组成了我们当前的文本。所有词的统计概率分布可以从语料库获得,具体如何以“一定的概率选择”,这就是各种具体的主题模型算法的任务了。
当然还有一些不是基于统计的方法,比如我们下面讲到的LSI。
2. 潜在语义索引(LSI)概述
潜在语义索引(Latent Semantic Indexing,以下简称LSI),有的文章也叫Latent Semantic Analysis(LSA)。其实是一个东西,后面我们统称LSI,它是一种简单实用的主题模型。LSI是基于奇异值分解(SVD)的方法来得到文本的主题的。
而SVD及其应用我们在前面的文章也多次讲到,比如:奇异值分解(SVD)原理与在降维中的应用和矩阵分解在协同过滤推荐算法中的应用。如果大家对SVD还不熟悉,建议复习奇异值分解(SVD)原理与在降维中的应用后再读下面的内容。
回到LSI本身,对于一些规模较小的问题,如果想快速粗粒度的找出一些主题分布的关系,则LSI是比较好的一个选择,其他时候,如果你需要使用主题模型,推荐使用LDA和HDP。
以上是关于LSI模型概念的主要内容,如果未能解决你的问题,请参考以下文章