Julia初学备忘

Posted qizhien

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Julia初学备忘相关的知识,希望对你有一定的参考价值。

println("hello!")
println("hello!")
print("hello!")
print("hello!")
hello!
hello!
hello!hello!

两个函数换行区别。

using Pkg

abstract type Real <: Number end

Real 是Number的子类

(1+2)::Int

:: 类型声明符号,如同Python3中:,如 def uniquePaths(self, m: int, n: int) -> int:

:: 运算符可以用来在程序中给表达式和变量附加类型注释。

例子,让参数为指定类型,

#指定参数 M 为Matrix类型,这里T是参数模板比如整数Int,Float64等,T <: Number表示参数得是Number子类型
function restructure_matrix(M::Matrix{T}) where {T <: Number}
#Matrix其实是二维数组
Matrix
Array{T,2} where T
#Vector是维数为1的数组
Vector
Array{T,1} where T

例子,让返回值为指定类型,

function sinc(x)::Float64
    if x == 0
        return 1
    end
    return sin(pi*x)/(pi*x)
end

随便乱试,

字符串,符号以及字典

sym = Symbol("haha") #:haha
str = String("haha") #"haha"

dic = Dict([("C",7),("D",8),("A", 3), ("B", 2),("E",1)])
tem =keys(dic)
typeof(tem) #Base.KeySet

collect(tem)
typeof(collect(tem)) #Array{String,1}

collect(dic)
sort(collect(dic)) #按键排序
dic["B"]
dic[collect(keys(dic))[1]] #取字典第一个元素,字典键是无序(不按你加入顺序)的且“B”为第一个
sort(collect(keys(dic)))  #这时A才在前



#collect后是Pair的向量
dic
Dict{String,Int64} with 5 entries:
  "B" => 2
  "A" => 3
  "C" => 7
  "D" => 8
  "E" => 1
collect(dic)
5-element Array{Pair{String,Int64},1}:
 "B" => 2
 "A" => 3
 "C" => 7
 "D" => 8
 "E" => 1

例子,声明复合类型成员类型,

struct Foo
     bar #默认Any类型
     baz::Int
     qux::Float64
 end
#摸索一下
typeof(Foo)
Foo.bar #type DataType has no field bar
a = Foo(1,2,3)
#atom ctrl+/注释  atom 选中提示 设为 enter
typeof(a)   #Foo
a.bar
a.baz

数组挺重要的, ;另起一行,增加行数;空格另起一列,增加列数;分别相当于numpy中 np.r_[]np.c_[] (有时间好好总结,易忘记,官方说法是增加第一维与第二维,这不清晰,谁知道你往哪边数。。)

Xtest = [0 4 1;
         2 2 0;
         1 1 1]
3×3 Array{Int64,2}:
 0  4  1
 2  2  0
 1  1  1

更多例子,没时间解释了,跑跑,想想就知道,(浪费很长时间,用了再看,记此备案)

[1 3 2 4]
[[1 3] [2 4]]
1×4 Array{Int64,2}:
 1  3  2  4
[1 ;3; 2; 4]
[1 ,3 ,2, 4]
[[1, 3] ;[2, 4]] 
4-element Array{Int64,1}:
 1
 3
 2
 4
[1 3; 2 4]
[[1 3] ;[2 4]]
2×2 Array{Int64,2}:
 1  3
 2  4
[[1 ,3] [2 ,4]] #[[1, 3] ;[2, 4]] add row
2×2 Array{Int64,2}:
 1  2
 3  4

附上python例子,

np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
[[1 2 3 0 0 4 5 6]]
np.c_[np.array([1,2,3]), np.array([4,5,6])]
[[1 4]
 [2 5]
 [3 6]]
np.r_[np.array([1,2,3]), np.array([4,5,6])]
[0 1 2 3 4 5]
np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
[1 2 3 0 0 4 5 6]

上面可能有点迷,在二维数组,这个规律更清晰,

x= np.c_[np.array([11,12]), np.array([14,15])]
y = np.arange(4).reshape(2,2)
y
array([[0, 1],
       [2, 3]])
x
array([[11, 14],
       [12, 15]])
np.c_[x,y] #列数增加
array([[11, 14,  0,  1],
       [12, 15,  2,  3]])

np.r_[x,y] #行数增加
array([[11, 14],
       [12, 15],
       [ 0,  1],
       [ 2,  3]])

复合类型

#复合类型 Composite Types
julia> 
julia> foo = Foo("Hello, world.", 23, 1.5)
Foo("Hello, world.", 23, 1.5)

julia> typeof(foo)
Foo
#类型联合
julia> IntOrString = Union{Int,AbstractString}
Union{Int64, AbstractString}

julia> 1 :: IntOrString
1

julia> "Hello!" :: IntOrString
"Hello!"

julia> 1.0 :: IntOrString
ERROR: TypeError: in typeassert, expected Union{Int64, AbstractString}, got Float64
#有参数复合类型 Parametric Composite Types
julia> struct Point{T}
           x::T
           y::T
       end
#NTuple{N,T} is a convenient alias for Tuple{Vararg{T,N}}, i.e. a tuple type containing exactly N elements of type T.

技术图片

以上是关于Julia初学备忘的主要内容,如果未能解决你的问题,请参考以下文章

Flutter 布局备忘录

针对初学者,5个必备的 Python 备忘单

常用python日期日志获取内容循环的代码片段

Cheat—— 给Linux初学者和管理员一个终极命令行"备忘单"

为啥 Julia 代码性能比 Fortran 低很多?

PHP必用代码片段