吴恩达深度学习课程第一课 — 神经网络与深度学习 — 第一周练习
Posted yukinote
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了吴恩达深度学习课程第一课 — 神经网络与深度学习 — 第一周练习相关的知识,希望对你有一定的参考价值。
课程一 - 神经网络和深度学习
第一周 - 深度学习简介
第 1 题
“人工智能是新电力”这个比喻指的是什么?
A.人工智能为我们的家庭和办公室的个人设备供电,类似于电力。
B.通过“智能电网”,人工智能正在传递新一波的电力。
C.人工智能在计算机上运行,因此由电力驱动,但它让计算机做以前不可能做的事情。
D.与100年前开始的电力类似,人工智能正在改变多个行业。
第 2 题
以下哪些是最近深度学习开始崛起的原因?(选2个答案)
A.我们拥有了更多的计算能力
B.神经网络是一个崭新的领域。
C.我们有了更多的数据。
D.深度学习在诸如在线广告、语音识别和图像识别等重要应用方面取得了显著的改进。
第 3 题
回想一下这个机器学习迭代的图。以下哪项陈述是正确的?(选出所有正确项)
A.能够快速地尝试各种想法可以让深入学习的工程师更快地迭代。
B.更快的计算有助于加快团队迭代一个好主意所需的时间。
C.在大数据集上训练比在小数据集上训练更快。
D.深度学习算法的最新进展使我们能够更快地训练好的模型(即使不改变CPU/GPU硬件)。
第 4 题
当一个有经验的深度学习工程师处理一个新问题时,他们通常可以在第一次尝试时利用以前问题的洞察力来训练一个好的模型,而不需要在不同的模型中重复多次。
A.对 B.不对
第 5 题
这些图中的哪一个表示ReLU激活函数?
A.
B.
C.
D.
第 6 题
用于猫识别的图像是“结构化”数据的一个例子,因为它在计算机中表示为结构化的数组。
A.对 B.不对
第 7 题
人口数据集包含不同城市人口、人均GDP、经济增长的统计数据,这是“非结构化”数据的一个例子,因为它包含来自不同来源的数据。
A.对 B.不对
第 8 题
为什么RNN(递归神经网络)被用于机器翻译,比如说将英语翻译成法语?(选出所有正确项)
A.它可以训练成一个有监督的学习问题
B.它比卷积神经网络(CNN)更强大
C.当输入/输出是一个序列(例如,一个单词序列)时适用
D.RNN表示 想法->代码->实验->想法->... 的循环过程
第 9 题
在这PPT截图中,水平轴(X轴)和垂直轴(Y轴)代表什么?
A.X轴代表数据量,Y轴代表模型规模
B.X轴代表数据量,Y轴代表模型表现
C.X轴代表模型表现,Y轴代表数据量
D.X轴代表模型的输入,Y轴代表输出
第 10 题
假设前一个问题中所描述的趋势是准确的(并且希望你的坐标轴标签正确),下列哪一个是正确的?(选出所有正确项)
A.增加训练集的大小通常不会影响算法的性能,而且可能会有很大帮助。
B.增加神经网络的规模通常不会影响算法的性能,而且可能会有很大帮助。
C.减小训练集的大小通常不会影响算法的性能,而且可能会有很大帮助。
D.减小神经网络的规模通常不会影响算法的性能,而且可能会有很大帮助。
1-10题 答案
1.D 2.AC 3.ABD 4.B 5.C 6.B 7.B 8.AC 9.B 10.AB
以上是关于吴恩达深度学习课程第一课 — 神经网络与深度学习 — 第一周练习的主要内容,如果未能解决你的问题,请参考以下文章
吴恩达深度学习课程第一课 — 神经网络与深度学习 — 第四周练习
吴恩达实验(神经网络和深度学习)第一课第三周,代码和数据集,亲测可运行