Airflow自定义插件, 使用datax抽数

Posted woshimrf

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Airflow自定义插件, 使用datax抽数相关的知识,希望对你有一定的参考价值。

Airflow自定义插件

Airflow之所以受欢迎的一个重要因素就是它的插件机制。Python成熟类库可以很方便的引入各种插件。在我们实际工作中,必然会遇到官方的一些插件不足够满足需求的时候。这时候,我们可以编写自己的插件。不需要你了解内部原理,甚至不需要很熟悉Python, 反正我连蒙带猜写的。

插件分类

Airflow的插件分为Operator和Sensor两种。Operator是具体要执行的任务插件, Sensor则是条件传感器,当我需要设定某些依赖的时候可以通过不同的sensor来感知条件是否满足。

Airflow对插件提供的支持

插件肯定是Python文件了,系统必然需要加载才能执行。Airflow提供了一个简单插件管理器,会扫描$AIRFLOW_HOME/plugins加载我们的插件。

所以,我们只需要将写好的插件放入这个目录下就可以了。

插件语法

Operator和Sensor都声明了需要的参数,Operator通过调用execute来执行, sensor通过poke来确认。以Operator为例子。

插件的使用过程为:

dag  -> operator -> hook

Hook就是任务执行的具体操作了。

Operator通过继承BaseOperator实现对dag相关属性的绑定, Hook通过继承BaseHook实现对系统配置和资源获取的一些封装。

自定义一个通知插件NotifyOperator

前文https://www.cnblogs.com/woshimrf/p/airflow-dag.html 提到我们通过自定义通知实现多功能任务告警,以下就是一个demo。

文件结构如下:

plugins
│   ├── hooks
│   └── operators

NotifyOperator

首先,在operators目录下创建一个Operator.

# -*- coding: utf-8 -*-
#

from hooks.notify_hook import NotifyHook
from airflow.operators.bash_operator import BaseOperator

class NotifyOperator(BaseOperator):
    """
    使用通知服务发送通知

    :param message: 内容
    :type message: str or dict
    :param receivers: 英文逗号分割的罗盘账号
    :type receivers: str
    :param subject: 邮件主题
    :type subject: str
    """
    template_fields = ('message', 'subject')

    @apply_defaults
    def __init__(self,
                 subject=None,
                 message=None,
                 receivers=None,
                 *args,
                 **kwargs):
        super().__init__(*args, **kwargs)
        self.message = message
        self.receivers = receivers
        self.subject = subject

    def execute(self, context):
        self.log.info('Sending notify message. receivers:{}  message:{}'.format(self.receivers, self.message))
        hook = NotifyHook(
            subject=self.subject,
            message=self.message,
            receivers=self.receivers
        )
        hook.send()
  • 继承BaseOperator
  • 引入NotifyHook, 这个还没创建,等下创建
  • template_fields, 想要使用模板变量替换,比如{{ds}}, 字段必须声明到template_fields
  • Operator执行的时候会调用execute方法, 这个就是执行的内容

上面可以看出,operator就是接口声明。

NotifyHook

在hooks目录下创建NotifyHook

# -*- coding: utf-8 -*-
#

import json
import requests
from airflow import AirflowException
from airflow.hooks.http_hook import HttpHook

class NotifyHook(HttpHook):
    """
    使用通知服务发送通知

    :param send_type: 通知类型选填 MAIL,DINGDING,SMS,选填多个时中间用英文逗号隔开
    :type send_type: str
    :param message: 内容
    :type message: str or dict
    :param receivers: 英文逗号分割的账号
    :type receivers: str
    :param subject: 邮件主题
    :type subject: str
    """

    def __init__(self,
                 notify_conn_id='notify_default',
                 send_type='MAIL',
                 subject=None,
                 message=None,
                 receivers=None,
                 *args,
                 **kwargs
                 ):
        super().__init__(http_conn_id=notify_conn_id, *args, **kwargs)
        self.send_type = send_type
        self.message = message
        self.subject = subject
        self.receivers = receivers


    def _build_message(self):
        """
        构建data
        """
        data = {
                "content": self.message,
                "contentType": "HTML",
                "receivers": self.receivers,
                "sendType": self.send_type,
                "sender": '【Airflow】',
                "subject": '【Airflow】' + self.subject
            }
        return json.dumps(data)

    def get_conn(self, headers=None):
        """
        Overwrite HttpHook get_conn because just need base_url and headers and
        not don't need generic params

        :param headers: additional headers to be passed through as a dictionary
        :type headers: dict
        """
        self.base_url = 'http://notify.ryan-miao.com'
        session = requests.Session()
        if headers:
            session.headers.update(headers)
        return session

    def send(self):
        """
        Send Notify message
        """
        data = self._build_message()
        self.log.info('Sending message: %s',  data)
        resp = self.run(endpoint='/api/v2/notify/send',
                        data=data,
                        headers={'Content-Type': 'application/json',
                                 'app-id': 'ryan',
                                 'app-key': '123456'})
        if int(resp.json().get('retCode')) != 0:
            raise AirflowException('Send notify message failed, receive error '
                                   'message %s', resp.text)
        self.log.info('Success Send notify message')
  • 这里使用的我自己的通知服务api调用。因为是http请求,所以直接继承HttpHook来发送请求就可以了。
  • http_conn_id是用来读取数据库中connection里配置的host的,这里直接覆盖,固定我们通知服务的地址。
  • 通过抛出异常的方式来终止服务

如何使用

将上面两个文件放到airflow对应的plugins目录下, airflow就自动加载了。然后,当做任务类型使用

from operators.notify_operator import NotifyOperator

notification = NotifyOperator(
                    task_id="we_are_done",
                    subject='发送邮件',
                    message='content',
                    receivers='ryanmiao'
                )

也可以直接执行。比如,我们前面提到任务失败告警可以自定义通知。

from operators.notify_operator import NotifyOperator

def mail_failure_callback(receivers):
    """
    失败后邮件通知
    :receivers  接收人,多个接收人用英文逗号分开
    """

    def mail_back(context):
        subject="【执行失败】DAG {} TASK {} ds {}".format(
                                                context['task_instance'].dag_id,
                                                context['task_instance'].task_id,
                                                context['ds'])
        message="【执行失败】DAG:  {};<br> TASK:  {} <br>; ds {} <br>;   原因: {} .<br>"                 "查看地址: http://airflow.ryan-miao.com/admin/airflow/tree?dag_id={}"                 .format(
                context['task_instance'].dag_id,
                context['task_instance'].task_id,
                context['ds'],
                context['exception'],
                context['task_instance'].dag_id)
            
        return NotifyOperator(
                    task_id="mail_failed_notify_callback",
                    subject=subject,
                    message=message,
                    receivers=receivers
                ).execute(context)

    return mail_back

default_args = {
    'owner': 'ryanmiao',
    'depends_on_past': False,
    'start_date': datetime(2019, 5, 1, 9),
    'on_failure_callback': mail_failure_callback(receivers='ryanmiao'),
    'retries': 0
}

dag = DAG(
    'example', default_args=default_args, schedule_interval=None)

自定义一个RDBMS2Hive插件

我们任务调度有个常见的服务是数据抽取到Hive,现在来制作这个插件,可以从关系数据库中读取数据,然后存储到hive。这样,用户只要在airflow配置一下要抽数的database, table和目标hive table就可以实现每天数据入库了。

异构数据传输转换工具很多, 最简单的就是使用原生的dump工具,将数据dump下来,然后import到另一个数据库里。

比如postgres dump

${sql}查询的列导出到文件${export_data_file}

psql -h$SRC_HOST_IP -U$SRC_USER_NAME -d$SRC_DB -p$SRC_HOST_PORT -c  "copy (${sql}) to '${export_data_file}' WITH NULL AS ''"

然后导入hive

LOAD DATA LOCAL INPATH '${export_data_file}' INTO TABLE $TAR_TABLENAME PARTITION (BIZDATE='$BIZ_DATE')

对postgres来说,copy是最快的方案了, 但可能会遇到 , 等各种转义符号,导出的txt文件或者cvs文件格式就会混乱,需要做对应符号转义处理。

同样, mysql 可以直接把数据查询出来

cat search.sql | mysql -h"$SRC_HOST_IP" -u"$SRC_USER_NAME" -p"$SRC_USER_PWD" -P"$SRC_HOST_PORT" -D"$SRC_DB" --default-character-set=${mysql_charset} -N -s | sed "s/NULL/\\\\N/ig;s/\\\\\\\\n//ig" > result.txt

上述这些命令行的好处就是快,不好的地方在于shell命令的脆弱性和错误处理。最终,选择了集成化的数据转换工具datax. datax是阿里巴巴开源的一款异构数据源同步工具, 虽然看起来不怎么更新了,但简单使用还是可以的。https://github.com/alibaba/DataX

datax的用法相对简单,按照文档配置一下读取数据源和目标数据源,然后执行调用就可以了。可以当做命令行工具来使用。

结合airflow,可以自己实现datax插件。通过读取connections拿到数据源链接配置,然后生成datax的配置文件json,最后调用datax执行。下面是一个从pg或者mysql读取数据,导入hive的插件实现。

主要思路是:

  1. hdfs创建一个目录
  2. 生成datax配置文件
  3. datax执行配置文件,将数据抽取到hdfs
  4. hive命令行load hdfs

RDBMS2HiveOperator

# -*- coding: utf-8 -*-
#
#

"""
postgres或者mysql 入库到hdfs
"""
import os
import signal

from hooks.rdbms_to_hive_hook import RDBMS2HiveHook
from airflow.exceptions import AirflowException
from airflow.models import BaseOperator


class RDBMS2HiveOperator(BaseOperator):
    """
    传输pg到hive
    https://github.com/alibaba/DataX

    :param conn_id: pg连接id
    :param query_sql : pg查询语句
    :param split_pk  : pg分割主键, NONE表示不分割,指定后可以多线程分割,加快传输
    :param hive_db   : hive的db
    :param hive_table: hive的table
    :param hive_table_column  column数组, column={name:a, type: int} 或者逗号分割的字符串, column=a,b,c
    :param hive_table_partition 分区bizdate值
    """
    template_fields = ('query_sql',  'hive_db', 'hive_table','hive_table_partition')
    ui_color = '#edd5f1'

    @apply_defaults
    def __init__(self,
                 conn_id,
                 query_sql,
                 hive_db,
                 hive_table,
                 hive_table_column,
                 hive_table_partition,
                 split_pk=None,
                 *args,
                 **kwargs):
        super().__init__(*args, **kwargs)
        self.conn_id = conn_id
        self.query_sql = query_sql
        self.split_pk = split_pk
        self.hive_db = hive_db
        self.hive_table = hive_table
        self.hive_table_column = hive_table_column
        self.hive_table_partition = hive_table_partition
        

    def execute(self, context):
        """
        Execute 
        """
        task_id = context['task_instance'].dag_id + "#" + context['task_instance'].task_id

        self.hook = RDBMS2HiveHook(
                        task_id = task_id,
                        conn_id = self.conn_id,
                        query_sql = self.query_sql, 
                        split_pk=self.split_pk, 
                        hive_db=self.hive_db, 
                        hive_table=self.hive_table,
                        hive_table_column=self.hive_table_column,
                        hive_table_partition=self.hive_table_partition
                        )
        self.hook.execute(context=context)

        
    def on_kill(self):
        self.log.info('Sending SIGTERM signal to bash process group')
        os.killpg(os.getpgid(self.hook.sp.pid), signal.SIGTERM)

RDBMS2HiveHook

# -*- coding: utf-8 -*-
#

"""
datax入库hive
"""
import subprocess
import uuid
import json
import os

from airflow.exceptions import AirflowException
from airflow.hooks.base_hook import BaseHook


class RDBMS2HiveHook(BaseHook):
    """
    Datax执行器 
    """

    def __init__(self, 
                 task_id,
                 conn_id,
                 query_sql,
                 hive_db,
                 hive_table,
                 hive_table_column,
                 hive_table_partition,
                 split_pk=None):
        self.task_id = task_id
        self.conn = self.get_connection(conn_id)
        self.query_sql = query_sql
        self.split_pk = split_pk
        self.hive_db = hive_db
        self.hive_table = hive_table
        self.hive_table_partition = hive_table_partition
        self.log.info("Using connection to: {}:{}/{}".format(self.conn.host, self.conn.port, self.conn.schema))
         
        self.hive_table_column = hive_table_column 
        if isinstance(hive_table_column, str):
            self.hive_table_column = []
            cl = hive_table_column.split(',') 
            for item in cl:
                hive_table_column_item = {
                    "name": item,
                    "type": "string"
                }
                self.hive_table_column.append(hive_table_column_item)

    
    def Popen(self, cmd, **kwargs):
        """
        Remote Popen

        :param cmd: command to remotely execute
        :param kwargs: extra arguments to Popen (see subprocess.Popen)
        :return: handle to subprocess
        """
        self.sp = subprocess.Popen(
            cmd,
            stdout=subprocess.PIPE,
            stderr=subprocess.STDOUT,
            **kwargs)

        for line in iter(self.sp.stdout):
            self.log.info(line.strip().decode('utf-8'))

        self.sp.wait()

        self.log.info("Command exited with return code %s", self.sp.returncode)

        if self.sp.returncode:
            raise AirflowException("Execute command failed")



    def generate_setting(self):
        """
         datax速度等设置
        """
        self.setting= {
            "speed": {
                 "byte": 104857600
            },
            "errorLimit": {
                "record": 0,
                "percentage": 0.02
            }
        }
        return self.setting
    
    def generate_reader(self):
        """
        datax reader
        """
        conn_type = 'mysql'
        reader_name = 'mysqlreader'
        if(self.conn.conn_type == 'postgres'):
            conn_type = 'postgresql'
            reader_name = 'postgresqlreader'
        
        self.jdbcUrl =  "jdbc:"+conn_type+"://"+self.conn.host.strip()+":"+str(self.conn.port)+"/"+ self.conn.schema.strip()
        self.reader =  {
            "name": reader_name,
            "parameter": {
                "username": self.conn.login.strip(),
                "password": self.conn.password.strip(),
                "connection": [
                    {
                        "querySql": [
                            self.query_sql
                        ],
                        "jdbcUrl": [
                            self.jdbcUrl
                        ]
                    }
                ]
            }
        }
        
        return self.reader

    def generate_writer(self):
        """
        datax hdafs writer
        """
        self.file_type = "text"
        self.hdfs_path = "/datax/"+self.hive_db+"/"+self.hive_table+"/"+self.hive_table_partition
        self.log.info("临时存储目录:{}".format(self.hdfs_path))
        self.writer = {
                    "name": "hdfswriter",
                    "parameter": {
                        "defaultFS": "hdfs://nameservice1",
                        "hadoopConfig": {
                            "dfs.nameservices": "nameservice1",
                            "dfs.ha.automatic-failover.enabled.nameservice1": True,
                            "ha.zookeeper.quorum": "bigdata2-prod-nn01.ryan-miao.com:2181,bigdata2-prod-nn02.ryan-miao.com:2181,bigdata2-prod-nn03.ryan-miao.com:2181",
                            "dfs.ha.namenodes.nameservice1": "namenode117,namenode124",
                            "dfs.namenode.rpc-address.nameservice1.namenode117": "bigdata2-prod-nn01.ryan-miao.com:8020",
                            "dfs.namenode.servicerpc-address.nameservice1.namenode117": "bigdata2-prod-nn01.ryan-miao.com:8022",
                            "dfs.namenode.http-address.nameservice1.namenode117": "bigdata2-prod-nn01.ryan-miao.com:50070",
                            "dfs.namenode.https-address.nameservice1.namenode117": "bigdata2-prod-nn01.ryan-miao.com:50470",
                            "dfs.namenode.rpc-address.nameservice1.namenode124": "bigdata2-prod-nn02.ryan-miao.com:8020",
                            "dfs.namenode.servicerpc-address.nameservice1.namenode124": "bigdata2-prod-nn02.ryan-miao.com:8022",
                            "dfs.namenode.http-address.nameservice1.namenode124": "bigdata2-prod-nn02.ryan-miao.com:50070",
                            "dfs.namenode.https-address.nameservice1.namenode124": "bigdata2-prod-nn02.ryan-miao.com:50470",
                            "dfs.replication": 3,
                            "dfs.client.failover.proxy.provider.nameservice1": "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider"
                        },
                        "fileType": self.file_type,
                        "path": self.hdfs_path,
                        "fileName": self.task_id,
                        "column": self.hive_table_column,
                        "writeMode": "nonConflict",
                        "fieldDelimiter": "	"
                    }
            }
        return self.writer

    def generate_config(self):
        content = [{
            "reader": self.generate_reader(),
            "writer": self.generate_writer()
        }]

        job = {
            "setting": self.generate_setting(),
            "content": content
        }

        config = {
            "job": job
        }

        self.target_json = json.dumps(config)

        # write json to file
        self.json_file= '/tmp/datax_json_'+self.task_id+ uuid.uuid1().hex
        # 打开一个文件
        fo = open(self.json_file, "w")
        fo.write(self.target_json)
        fo.close()
        self.log.info("write config json {}".format(self.json_file))
        return self.json_file

    

    def execute(self, context):
        self.generate_config()
        # check hdfs_path
        hdfs_path = self.hdfs_path
        if(not hdfs_path.startswith('/datax/')):
            raise AirflowException("hdfs路径填写错误,不在/datax目录下")

        # 创建目录
        cmd = ['hadoop', 'fs', '-mkdir', '-p', hdfs_path]
        self.Popen(cmd)

        # 删除文件
        if(not hdfs_path.startswith('/datax/')):
            raise AirflowException("hdfs路径填写错误,不在/datax目录下")
        
        files_path = hdfs_path+"/*";
        try:
            cmd = ['hadoop', 'fs', '-rm', files_path]
            self.Popen(cmd)
        except Exception:
            self.log.info('ignore err, just make sure the dir is clean')
            pass
        
        
        # 上传文件
        datax_home = '/data/opt/datax/bin'
        cmd = [ 'python', datax_home + '/datax.py', self.json_file]
        self.Popen(cmd)
        # 删除配置文件
        os.remove(self.json_file)

        # hive加载
        #hive load data from hdfs
        hql = "LOAD DATA INPATH '"+ hdfs_path + "' OVERWRITE  INTO TABLE "               + self.hive_db+"."+self.hive_table + " PARTITION (bizdate="+ self.hive_table_partition  +")"
        cmd = ['hive', '-e', """ + hql + """]
        self.Popen(cmd)

如何使用

  1. admin登录airflow
  2. 配置connection, 配置pg或者mysql的数据库
  3. 修改hdfs集群配置信息
  4. 创建一个DAG
from airflow import DAG

from operators.rdbms_to_hive_operator import RDBMS2HiveOperator
from datetime import datetime, timedelta
from dag_utils import compass_utils


default_args = {
    'owner': 'ryanmiao',
    'depends_on_past': False,
    'start_date': datetime(2019, 5, 1, 9),
    'on_failure_callback': compass_utils.failure_callback(dingding_conn_id='dingding_bigdata', receivers='ryanmiao'),
    # 'on_success_callback': compass_utils.success_callback(dingding_conn_id='dingding_bigdata', receivers='ryanmiao'),
    'retries': 0
}

dag = DAG(
    'example_pg2hive', default_args=default_args, schedule_interval=None)

# CREATE TABLE test.pg2hive_test(
#      ftime int,
#      raw_cp_count int,
#      raw_to_delete_cp_count bigint,
#      create_time timestamp
#      )
#  COMMENT '这个是测试datax表'
#  PARTITIONED BY (bizdate int)
# ROW FORMAT DELIMITED
# FIELDS TERMINATED BY '	'
# LINES TERMINATED BY '
'
#  STORED AS TEXTFILE;
 
hive_table_column = "ftime,raw_cp_count,raw_to_delete_cp_count,create_time"

t1 = RDBMS2HiveOperator(
    task_id='pg2hive',
    conn_id='pg_rdb_poi',
    query_sql='select ftime, raw_cp_count, raw_to_delete_cp_count, create_time from tbl_poi_report limit 1000',
    hive_db='test',
    hive_table='pg2hive_test',
    hive_table_column=hive_table_column,
    hive_table_partition="{{ ds_nodash }}",
    dag=dag
)

以上是关于Airflow自定义插件, 使用datax抽数的主要内容,如果未能解决你的问题,请参考以下文章

Airflow Jinja模板无法与自定义操作员一起使用

大数据技术之DataX DataX插件开发

大数据技术之DataX DataX插件开发

使自定义 Airflow 宏扩展其他宏

解决DataX自定义kuduWriter无法解析Blob类型字段的问题

Apache Airflow Celery Executor。导入一个本地自定义的python包