spark的运行指标监控

Posted hejunhong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了spark的运行指标监控相关的知识,希望对你有一定的参考价值。

sparkUi的4040界面已经有了运行监控指标,为什么我们还要自定义存入redis?

1.结合自己的业务,可以将监控页面集成到自己的数据平台内,方便问题查找,邮件告警

2.可以在sparkUi的基础上,添加一些自己想要指标统计

一、spark的SparkListener
sparkListener是一个接口,我们使用时需要自定义监控类实现sparkListener接口中的各种抽象方法,SparkListener 下各个事件对应的函数名非常直白,即如字面所表达意思。 想对哪个阶段的事件做一些自定义的动作,变继承SparkListener实现对应的函数即可,这些方法会帮助我监控spark运行时各个阶段的数据量,从而我们可以获得这些监控指标数据

abstract class SparkListener extends SparkListenerInterface {
//stage完成的时调用 override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = { }
//stage提交时调用 override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = { } override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = { } override def onTaskGettingResult(taskGettingResult: SparkListenerTaskGettingResult): Unit = { } //task结束时调用 override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { } override def onJobStart(jobStart: SparkListenerJobStart): Unit = { } override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = { } override def onEnvironmentUpdate(environmentUpdate: SparkListenerEnvironmentUpdate): Unit = { } override def onBlockManagerAdded(blockManagerAdded: SparkListenerBlockManagerAdded): Unit = { } override def onBlockManagerRemoved( blockManagerRemoved: SparkListenerBlockManagerRemoved): Unit = { } override def onUnpersistRDD(unpersistRDD: SparkListenerUnpersistRDD): Unit = { } override def onApplicationStart(applicationStart: SparkListenerApplicationStart): Unit = { } override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = { } override def onExecutorMetricsUpdate( executorMetricsUpdate: SparkListenerExecutorMetricsUpdate): Unit = { } override def onExecutorAdded(executorAdded: SparkListenerExecutorAdded): Unit = { } override def onExecutorRemoved(executorRemoved: SparkListenerExecutorRemoved): Unit = { } override def onBlockUpdated(blockUpdated: SparkListenerBlockUpdated): Unit = { } override def onOtherEvent(event: SparkListenerEvent): Unit = { } }

1.实现自己SparkListener,对onTaskEnd方法是指标存入redis

(1)SparkListener是一个接口,创建一个MySparkAppListener类继承SparkListener,实现里面的onTaskEnd即可

(2)方法:override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { }

  SparkListenerTaskEnd类:

case class SparkListenerTaskEnd(
                                 //spark的stageId
                                 stageId: Int,
                                 //尝试的阶段Id(也就是下级Stage?)
                                 stageAttemptId: Int,
                                 taskType: String,
                                 reason: TaskEndReason,
                                 //task信息
                                 taskInfo: TaskInfo,
                                 // task指标
                                 @Nullable taskMetrics: TaskMetrics)
  extends SparkListenerEvent

  

(3)在 onTaskEnd方法内可以通过成员taskinfo与taskMetrics获取的信息

/**
* 1、taskMetrics
* 2、shuffle
* 3、task运行(input output)
* 4、taskInfo
**/
(4)TaskMetrics可以获取的监控信息
class TaskMetrics private[spark] () extends Serializable {
  // Each metric is internally represented as an accumulator
  private val _executorDeserializeTime = new LongAccumulator
  private val _executorDeserializeCpuTime = new LongAccumulator
  private val _executorRunTime = new LongAccumulator
  private val _executorCpuTime = new LongAccumulator
  private val _resultSize = new LongAccumulator
  private val _jvmGCTime = new LongAccumulator
  private val _resultSerializationTime = new LongAccumulator
  private val _memoryBytesSpilled = new LongAccumulator
  private val _diskBytesSpilled = new LongAccumulator
  private val _peakExecutionMemory = new LongAccumulator
  private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]
val inputMetrics: InputMetrics = new InputMetrics()

/**
 * Metrics related to writing data externally (e.g. to a distributed filesystem),
 * defined only in tasks with output.
 */
val outputMetrics: OutputMetrics = new OutputMetrics()

/**
 * Metrics related to shuffle read aggregated across all shuffle dependencies.
 * This is defined only if there are shuffle dependencies in this task.
 */
val shuffleReadMetrics: ShuffleReadMetrics = new ShuffleReadMetrics()

/**
 * Metrics related to shuffle write, defined only in shuffle map stages.
 */
val shuffleWriteMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics()

(5)代码实现并存入redis

/**
 * 需求1.想自定义spark的job运行情况存入redis,集成到自己的业务后台展示中
 */
class MySparkAppListener extends SparkListener with Logging {

  val redisConf = "jedisConfig.properties"

  val jedis: Jedis = JedisUtil.getInstance().getJedis

  //父类的第一个方法
  override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {
    //在 onTaskEnd方法内可以获取的信息有
    /**
     * 1、taskMetrics
     * 2、shuffle
     * 3、task运行(input output)
     * 4、taskInfo
     **/

    val currentTimestamp = System.currentTimeMillis()
    // TaskMetrics(task的指标)可以拿到的指标
    /**
     * private val _executorDeserializeTime = new LongAccumulator
     * private val _executorDeserializeCpuTime = new LongAccumulator
     * private val _executorRunTime = new LongAccumulator
     * private val _executorCpuTime = new LongAccumulator
     * private val _resultSize = new LongAccumulator
     * private val _jvmGCTime = new LongAccumulator
     * private val _resultSerializationTime = new LongAccumulator
     * private val _memoryBytesSpilled = new LongAccumulator
     * private val _diskBytesSpilled = new LongAccumulator
     * private val _peakExecutionMemory = new LongAccumulator
     * private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]
     */
    val metrics = taskEnd.taskMetrics
    val taskMetricsMap = scala.collection.mutable.HashMap(
      "executorDeserializeTime" -> metrics.executorDeserializeTime, //executor的反序列化时间
      "executorDeserializeCpuTime" -> metrics.executorDeserializeCpuTime, //executor的反序列化的 cpu时间
      "executorRunTime" -> metrics.executorRunTime, //executoor的运行时间
      "resultSize" -> metrics.resultSize, //结果集大小
      "jvmGCTime" -> metrics.jvmGCTime, //
      "resultSerializationTime" -> metrics.resultSerializationTime,
      "memoryBytesSpilled" -> metrics.memoryBytesSpilled, //内存溢写的大小
      "diskBytesSpilled" -> metrics.diskBytesSpilled, //溢写到磁盘的大小
      "peakExecutionMemory" -> metrics.peakExecutionMemory //executor的最大内存
    )

    val jedisKey = "taskMetrics_" + {
      currentTimestamp
    }
    jedis.set(jedisKey, Json(DefaultFormats).write(jedisKey))
    jedis.pexpire(jedisKey, 3600)


    //======================shuffle指标================================
    val shuffleReadMetrics = metrics.shuffleReadMetrics
    val shuffleWriteMetrics = metrics.shuffleWriteMetrics

    //shuffleWriteMetrics shuffle读过程的指标有这些
    /**
     * private[executor] val _bytesWritten = new LongAccumulator
     * private[executor] val _recordsWritten = new LongAccumulator
     * private[executor] val _writeTime = new LongAccumulator
     */
    //shuffleReadMetrics shuffle写过程的指标有这些
    /**
     * private[executor] val _remoteBlocksFetched = new LongAccumulator
     * private[executor] val _localBlocksFetched = new LongAccumulator
     * private[executor] val _remoteBytesRead = new LongAccumulator
     * private[executor] val _localBytesRead = new LongAccumulator
     * private[executor] val _fetchWaitTime = new LongAccumulator
     * private[executor] val _recordsRead = new LongAccumulator
     */

    val shuffleMap = scala.collection.mutable.HashMap(
      "remoteBlocksFetched" -> shuffleReadMetrics.remoteBlocksFetched, //shuffle远程拉取数据块
      "localBlocksFetched" -> shuffleReadMetrics.localBlocksFetched, //本地块拉取
      "remoteBytesRead" -> shuffleReadMetrics.remoteBytesRead, //shuffle远程读取的字节数
      "localBytesRead" -> shuffleReadMetrics.localBytesRead, //读取本地数据的字节
      "fetchWaitTime" -> shuffleReadMetrics.fetchWaitTime, //拉取数据的等待时间
      "recordsRead" -> shuffleReadMetrics.recordsRead, //shuffle读取的记录总数
      "bytesWritten" -> shuffleWriteMetrics.bytesWritten, //shuffle写的总大小
      "recordsWritte" -> shuffleWriteMetrics.recordsWritten, //shuffle写的总记录数
      "writeTime" -> shuffleWriteMetrics.writeTime
    )

    val shuffleKey = s"shuffleKey${currentTimestamp}"
    jedis.set(shuffleKey, Json(DefaultFormats).write(shuffleMap))
    jedis.expire(shuffleKey, 3600)

    //=================输入输出========================
    val inputMetrics = taskEnd.taskMetrics.inputMetrics
    val outputMetrics = taskEnd.taskMetrics.outputMetrics

    val input_output = scala.collection.mutable.HashMap(
      "bytesRead" -> inputMetrics.bytesRead, //读取的大小
      "recordsRead" -> inputMetrics.recordsRead, //总记录数
      "bytesWritten" -> outputMetrics.bytesWritten,//输出的大小
      "recordsWritten" -> outputMetrics.recordsWritten//输出的记录数
    )
    val input_outputKey = s"input_outputKey${currentTimestamp}"
    jedis.set(input_outputKey, Json(DefaultFormats).write(input_output))
    jedis.expire(input_outputKey, 3600)



    //####################taskInfo#######
    val taskInfo: TaskInfo = taskEnd.taskInfo

    val taskInfoMap = scala.collection.mutable.HashMap(
      "taskId" -> taskInfo.taskId ,
      "host" -> taskInfo.host ,
      "speculative" -> taskInfo.speculative , //推测执行
      "failed" -> taskInfo.failed ,
      "killed" -> taskInfo.killed ,
      "running" -> taskInfo.running

    )

    val taskInfoKey = s"taskInfo${currentTimestamp}"
    jedis.set(taskInfoKey , Json(DefaultFormats).write(taskInfoMap))
    jedis.expire(taskInfoKey , 3600)

  }

(5)程序测试

  sparkContext.addSparkListener方法添加自己监控主类

sc.addSparkListener(new MySparkAppListener())

使用wordcount进行简单测试

技术图片

 

 

 

二、spark实时监控

1.StreamingListener是实时监控的接口,里面有数据接收成功、错误、停止、批次提交、开始、完成等指标,原理与上述相同

trait StreamingListener {

  /** Called when a receiver has been started */
  def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { }

  /** Called when a receiver has reported an error */
  def onReceiverError(receiverError: StreamingListenerReceiverError) { }

  /** Called when a receiver has been stopped */
  def onReceiverStopped(receiverStopped: StreamingListenerReceiverStopped) { }

  /** Called when a batch of jobs has been submitted for processing. */
  def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted) { }

  /** Called when processing of a batch of jobs has started.  */
  def onBatchStarted(batchStarted: StreamingListenerBatchStarted) { }

  /** Called when processing of a batch of jobs has completed. */
  def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) { }

  /** Called when processing of a job of a batch has started. */
  def onOutputOperationStarted(
      outputOperationStarted: StreamingListenerOutputOperationStarted) { }

  /** Called when processing of a job of a batch has completed. */
  def onOutputOperationCompleted(
      outputOperationCompleted: StreamingListenerOutputOperationCompleted) { }
}

2.主要指标及用途

1.onReceiverError 

监控数据接收错误信息,进行邮件告警

2.onBatchCompleted 该批次完成时调用该方法

(1)sparkstreaming的偏移量提交时,当改批次执行完,才进行offset的保存入库,(该无法保证统计入库完成后程序中断、offset未提交)
(2)批次处理时间大于了规定的窗口时间,程序出现阻塞,进行邮件告警

三、spark、yarn的web返回接口进行数据解析,获取指标信息

1.启动某个本地spark程序
访问 :http://localhost:4040/metrics/json/,得到一串json数据,解析gauges,则可获取所有的信息
{
    "version": "3.0.0", 
    "gauges": {
        "local-1581865176069.driver.BlockManager.disk.diskSpaceUsed_MB": {
            "value": 0
        }, 
        "local-1581865176069.driver.BlockManager.memory.maxMem_MB": {
            "value": 1989
        }, 
        "local-1581865176069.driver.BlockManager.memory.memUsed_MB": {
            "value": 0
        }, 
        "local-1581865176069.driver.BlockManager.memory.remainingMem_MB": {
            "value": 1989
        }, 
        "local-1581865176069.driver.DAGScheduler.job.activeJobs": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.job.allJobs": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.stage.failedStages": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.stage.runningStages": {
            "value": 0
        }, 
        "local-1581865176069.driver.DAGScheduler.stage.waitingStages": {
            "value": 0
        }
    }, 
    "counters": {
        "local-1581865176069.driver.HiveExternalCatalog.fileCacheHits": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.filesDiscovered": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.hiveClientCalls": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.parallelListingJobCount": {
            "count": 0
        }, 
        "local-1581865176069.driver.HiveExternalCatalog.partitionsFetched": {
            "count": 0
        }
    }, 
    "histograms": {
        "local-1581865176069.driver.CodeGenerator.compilationTime": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }, 
        "local-1581865176069.driver.CodeGenerator.generatedClassSize": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }, 
        "local-1581865176069.driver.CodeGenerator.generatedMethodSize": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }, 
        "local-1581865176069.driver.CodeGenerator.sourceCodeSize": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0
        }
    }, 
    "meters": { }, 
    "timers": {
        "local-1581865176069.driver.DAGScheduler.messageProcessingTime": {
            "count": 0, 
            "max": 0, 
            "mean": 0, 
            "min": 0, 
            "p50": 0, 
            "p75": 0, 
            "p95": 0, 
            "p98": 0, 
            "p99": 0, 
            "p999": 0, 
            "stddev": 0, 
            "m15_rate": 0, 
            "m1_rate": 0, 
            "m5_rate": 0, 
            "mean_rate": 0, 
            "duration_units": "milliseconds", 
            "rate_units": "calls/second"
        }
    }
}

 



2.spark提交至yarn
   val sparkDriverHost = sc.getConf.get("spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES")
    //监控信息页面路径为集群路径+/proxy/+应用id+/metrics/json
  val url = s"${sparkDriverHost}/metrics/json"

 3.作用

1.该job(endTime, applicationUniqueName, applicationId, sourceCount, costTime, countPerMillis)可以做表格,做链路统计

2.磁盘与内存信息做饼图,用来对内存和磁盘的监控

3.程序task的运行情况做表格,用来对job的监控 

 val fieldMap = scala.collection.mutable.Map(
      //TODO=================表格,做链路统计=================================
      "applicationId" -> monitorIndex._3.toString,
      "endTime" -> new DateTime(monitorIndex._1).toDateTime.toString("yyyy-MM-dd HH:mm:ss"),
      "applicationUniqueName" -> monitorIndex._2.toString,
      "sourceCount" -> monitorIndex._4.toString, //当前处理了多条数据
      "costTime" -> monitorIndex._5.toString,//花费的时间
      "countPerMillis" -> monitorIndex._6.toString,
      "serversCountMap" -> serversCountMap ,
      //TODO=================做饼图,用来对内存和磁盘的监控=================================
      "diskSpaceUsed_MB" -> diskSpaceUsed_MB ,//磁盘使用空间
      "maxMem_MB" -> maxMem_MB ,//最大内存
      "memUsed_MB" -> memUsed_MB ,//使用的内寸
      "remainingMem_MB" -> remainingMem_MB ,//闲置内存
      //TODO =================做表格,用来对job的监控=================================
      "activeJobs" -> activeJobs ,//当前正在运行的job
      "allJobs" -> allJobs ,//所有的job
      "failedStages" -> failedStages ,//是否出现错误的stage
      "runningStages" -> runningStages ,//正在运行的 stage
      "waitingStages" -> waitingStages ,//处于等待运行的stage
      "lastCompletedBatch_processingDelay" -> lastCompletedBatch_processingDelay ,//最近批次的延迟啥时间
      "lastCompletedBatch_processingTime" -> lastCompletedBatch_processingTime ,//正在处理的 批次的时间
      "lastReceivedBatch_records" -> lastReceivedBatch_records ,//最近接收到的数据量
      "runningBatches" -> runningBatches ,//正在运行的批次
      "totalCompletedBatches" -> totalCompletedBatches ,//所有完成批次
      "totalProcessedRecords" -> totalProcessedRecords ,//总处理数据条数
      "totalReceivedRecords" -> totalReceivedRecords ,//总接收数据
      "unprocessedBatches" -> unprocessedBatches ,//未处理的批次
      "waitingBatches" -> waitingBatches//处于等待的批次
    )

  

















 

以上是关于spark的运行指标监控的主要内容,如果未能解决你的问题,请参考以下文章

使用 Prometheus 监控容器化 Spark v2.1 应用程序

如何用 Uber JVM Profiler 等可视化工具监控 Spark 应用程序?

Java程序监控---Metrics

linux怎样查看spark运行状态

基于 prometheus 的微服务指标监控

基于 prometheus 的微服务指标监控