R语言与医学统计图形-31动态交互绘图
Posted jessepeng
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言与医学统计图形-31动态交互绘图相关的知识,希望对你有一定的参考价值。
1.plotly包
动态散点图
library(plotly)
# 交互散点图
plot_ly(data=iris,
x=~Sepal.Length,
y=~Petal.Length,
marker=list(size=10,
color='rgba(255,182,193,.9)',
line=list(color='rgba(152,0,0,.8)',
width=2))) %>%
layout(title='Styled Scatter',
yaxis=list(zeroline=FALSE),
xaxis=list(zeroline=FALSE))
#多维数据,添加标签
plot_ly(mpg,x=~hwy,y=~displ,color=~factor(cyl),
text=~paste('Model:',model)) %>%
layout(title='MPG data',font=list(family='Times New Roman',
size=13,color='forestgreen'))
#参数
plot_ly(data=iris,x=~Sepal.Length,y=~Petal.Length,
type = 'scatter',#lines/markers/text/none
mode='makers',
symbol = ~Species,
#点类型
symbols = c('circle','x','o'),color = I('black'),
marker=list(size=10))
#点连线形式
trace0 <- rnorm(100,mean=5)
trace1 <- rnorm(100,mean=0)
trace2 <- rnorm(100,mean=-5)
x <- c(1:100)
data <- data.frame(x,trace0,trace1,trace2)
#第一张散点图以线图形式展示
plot_ly(data,x=~x,y=~trace0,
name = 'trace 0',type = 'scatter',
mode='lines') %>%
#第二张以点连线形式展示
add_trace(y=~trace1,name='trace 1',
mode='lines+markers') %>%
#第三张普通散点图
add_trace(y=~trace2,name='trace 2',
mode='markers') %>%
layout(xaxis=list(zeroline=FALSE))
#add_trace/add_histogram/add_boxplot/add_text
其他动态图
#动态气泡图
# 动态线图
# 动态条形图
# 动态直方图
# 动态盒形图
# 动态误差条图
# 动态饼图和戒指图
2. recharts包
接近基础绘图语法。
散点图
#devtools::install_github('taiyun/recharts')
library(recharts)
#散点图
ePoints(iris[,3:5],series = ~Species)
ePoints(iris[,3:5],
xvar=~Petal.Length,
yvar=~Petal.Width,
series = ~Species,
xlab.name = 'Petal Length',
ylab.name = 'Petal Width',
xlab.namePosition = 'end',
ylab.namePosition = 'end',
title = 'IRIS data',
title.x = 'center',
title.y = 'top',
legend.orient = 'vertical',
legend.x = 'right',
legend.y = 'center')
其他动态图
#线图
names(mtcars)
eLine(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear)
#条形图
eBar(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear)
#饼图
x=runif(6)
names(x)=LETTERS[1:6]
ePie(x,type='pie',title = 'PIE')
#玫瑰图
ePie(x,type = 'rose',roseType = 'radias',title = 'Rose plot')
#雷达图
eRadar(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear)
#漏斗图、面积图等。。。
3. rChart包
语法近似于lattice绘图系统。在R中实现Polychart、Morris、NVD3等多个js绘图库。
https://github.com/ramnathv/rCharts
没安装上
Ploychart
4.threejs包
3D显示功能。
#install.packages('threejs')
library(threejs)
#三维散点图
N <- 100
i <- sample(3,N,replace = TRUE)
x <- matrix(rnorm(N*3),ncol=3)
lab <- c('small','bigger','biggest')
scatterplot3js(x,color = rainbow(N),labels=lab[i],
size=i,renderer = "canvas")
#三维地图
library(maps)
data("world.cities",package = 'maps')
cities <- world.cities[order(world.cities$pop,decreasing = TRUE)[1:1000],]
value <- 100*cities$pop/max(cities$pop)
col <- colorRampPalette(c('cyan','lightgreen'))(10)[floor(10*value/100)+1]
threejs::globejs(lat = cities$lat,
long=cities$long,
value=value,
color = col,
atmosphere = TRUE)
5.timevis包
#绘制动态时间轴,展示时间节点事件
library(timevis)
timevis(data.frame(id=1:3,
content=c('one','two','three'),
start=c('2016-01-10','2016-01-14','2016-01-19'),
end=c(NA,'2016-01-18',NA),
type=c('point','background','box')))
6.dygraphs包
#动态时间序列
library(dygraphs)
lungDeaths <- cbind(mdeaths,fdeaths)
dygraph(lungDeaths)
#选择特定时间
dygraph(lungDeaths) %>%
dyRangeSelector(dateWindow = c('1975-06-01','1978-12-31'))
7.leaflet包
js开源交互式地图包,在R中利用哦html5显示。
#install.packages('leaflet')
library(leaflet)
f <- leaflet() #初始化
y <- addTiles(f) #调用地图底图
addMarkers(y,
lng = 121.445,
lat=31.1980,
popup = '复旦大学上海医学院') #添加标记
#用管道符
leaflet() %>% addTiles() %>%
addMarkers(lng = 121.445,lat = 31.1980,popup = '复旦大学医学院')
功能强大,不再演示。
以上是关于R语言与医学统计图形-31动态交互绘图的主要内容,如果未能解决你的问题,请参考以下文章