CVPR2018资源汇总
Posted feifanrensheng
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CVPR2018资源汇总相关的知识,希望对你有一定的参考价值。
CVPR 2018大会将于2018年6月18~22日于美国犹他州的盐湖城(Salt Lake City)举办。
CVPR2018论文集下载:http://openaccess.thecvf.com/menu.py
目前CVPR2018论文还不能打包下载,但可以看到收录论文标题的清单,感兴趣的可以自行google/baidu下载
详细可以点击链接:https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr2018-paper-list.csv
cvpr2018论文解读集锦
https://zhuanlan.zhihu.com/p/35131736
CVPR 2017 论文解读集锦
http://cvmart.net/community/article/detail/69
ICCV 2017 论文解读集锦
http://cvmart.net/community/article/detail/153
CVPR2018 GAN相关论文汇总
链接:https://zhuanlan.zhihu.com/p/36436452
1. 数目统计:
风格迁移/cycleGAN/domain adaptation 13篇
去雾/去遮挡/超像素重建/Photo Enhancement 7篇
GAN优化 6篇
图像合成 10篇
人脸相关 7篇
姿态相关 4篇
行人重识别 3篇
其他类 <3篇
2. 分析:今年GAN的山头还是被domain adaptation和CycleGAN相关研究拿下,除此之外,图像合成和视觉病态问题也是GAN应用热点,人脸,行人识别异军突起,说明落地型工作开始增多。剩下几篇都属于挖坑型工作。
风格迁移/cycleGAN/domain adaptation:
1.PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup:
Huiwen Chang (); Jingwan Lu (Adobe Research); Fisher Yu (UC Berkeley); Adam Finkelstein (Princeton Univ.)
2.CartoonGAN: Generative Adversarial Networks for Photo Cartoonization:
Yang Chen (Tsinghua Univ.); Yu-Kun Lai (Cardiff Univ.); Yong-Jin Liu ()
3.StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation:
Yunjey Choi (Korea Univ.); Minje Choi (Korea Univ.); Munyoung Kim (College of New Jersey); Jung-Woo Ha (NAVER); Sunghun Kim (Hong Kong Univ. of Science and Technology); Jaegul Choo (Korea Univ.)
4.Generate to Adapt: Aligning Domains Using Generative Adversarial Networks:
Swami Sankaranarayanan (Univ. of Maryland); Yogesh Balaji (Univ. of Maryland); Carlos D. Castillo (); Rama Chellappa (Univ. of Maryland)
5.Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation:
Qingchao Chen (Unviersity College London); Yang Liu (Univ. of Cambridge); Zhaowen Wang (Adobe); Ian Wassell (); Kevin Chetty ()
6.Multi-Content GAN for Few-Shot Font Style Transfer:
Samaneh Azadi (UC Berkeley); Matthew Fisher (Adobe); Vladimir G. Kim (Adobe Research); Zhaowen Wang (Adobe); Eli Shechtman (Adobe Research); Trevor Darrell (UC Berkeley)
7.DA-GAN: Instance-Level Image Translation by Deep Attention Generative Adversarial Networks:
Shuang Ma (SUNY Buffalo); Jianlong Fu (); Chang Wen Chen (); Tao Mei ()
8.Adversarial Feature Augmentation for Unsupervised Domain Adaptation:
Riccardo Volpi (Istituto Italiano di Tecnologia); Pietro Morerio (Istituto Italiano di Tecnologia); Silvio Savarese (); Vittorio Murino (Istituto Italiano di Tecnologia)
9.Domain Generalization With Adversarial Feature Learning:
Haoliang Li (Nanyang Technological Univ.); Sinno Jialin Pan (Nanyang Technological Univ.); Shiqi Wang (City Univ. of Hong Kong); Alex C. Kot ()
10:Image to Image Translation for Domain Adaptation:
Zak Murez (UC San Diego); Soheil Kolouri (HRL Laboratories); David Kriegman (UC San Diego); Ravi Ramamoorthi (UC San Diego); Kyungnam Kim (HRL Laboratories)
11.Partial Transfer Learning With Selective Adversarial Networks:
Zhangjie Cao (Tsinghua Univ.); Mingsheng Long (Tsinghua Univ.); Jianmin Wang (); Michael I. Jordan (UC Berkeley)
12.Duplex Generative Adversarial Network for Unsupervised Domain Adaptation:
Lanqing Hu (ICT, CAS); Meina Kan (); Shiguang Shan (Chinese Academy of Sciences); Xilin Chen ()
13.Conditional Generative Adversarial Network for Structured Domain Adaptation:
去雾/去遮挡/超像素重建/Photo Enhancement :
1.Single Image Dehazing via Conditional Generative Adversarial Network:
Runde Li (Nanjing Univ. of Science and Technology ); Jinshan Pan (UC Merced); Zechao Li (Nanjing Univ. of Science and Technology ); Jinhui Tang ()
2.DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks:
Orest Kupyn (Ukrainian Catholic Univ.); Volodymyr Budzan (Ukrainian Catholic Univ.); Mykola Mykhailych (Ukrainian Catholic Univ.); Dmytro Mishkin (Czech Technical Univ.); Ji?í Matas ()
3.Deep Photo Enhancer: Unpaired Learning for Image Enhancement From Photographs With GANs:
Yu-Sheng Chen (National Taiwan Univ.); Yu-Ching Wang (National Taiwan Univ.); Man-Hsin Kao (National Taiwan Univ.); Yung-Yu Chuang (National Taiwan Univ.)
4.SeGAN: Segmenting and Generating the Invisible:
Kiana Ehsani (Univ. of Washington); Roozbeh Mottaghi (Allen Institute for AI); Ali Farhadi (Allen Institute for AI, Univ. of Washington)
5.Image Blind Denoising With Generative Adversarial Network Based Noise Modeling:
Jingwen Chen (Sun Yat-sen Univ.); Jiawei Chen (Sun Yat-sen Univ.); Hongyang Chao (Sun Yat-sen Univ.); Ming Yang ()
6.Attentive Generative Adversarial Network for Raindrop Removal From a Single Image:
Rui Qian (Peking Univ.); Robby T. Tan (Yale-NUS College; National Univ. of Singapore); Wenhan Yang (Peking Univ.); Jiajun Su (Peking Univ.); Jiaying Liu (Peking Univ.)
7.Stacked Conditional Generative Adversarial Networks for Jointly Learning Shadow Detection and Shadow Removal:
Jifeng Wang (Nanjing Univ. of Science and Technology); Xiang Li (Nanjing Univ. of Science and Technology); Jian Yang (Nanjing Univ. of Science and Technology)
GAN优化:
1.SGAN: An Alternative Training of Generative Adversarial Networks:
Tatjana Chavdarova (Idiap and EPFL); Fran?ois Fleuret (Idiap Research Inst.)
2.Multi-Agent Diverse Generative Adversarial Networks:
Arnab Ghosh (Univ. of Oxford); Viveka Kulharia (Univ. of Oxford); Vinay P. Namboodiri (Indian Inst. of Technology Kanpur); Philip H.S. Torr (Oxford); Puneet K. Dokania (Univ. of Oxford)
3.Generative Adversarial Image Synthesis With Decision Tree Latent Controller:
Takuhiro Kaneko (NTT); Kaoru Hiramatsu (NTT); Kunio Kashino (NTT)
4.Unsupervised Deep Generative Adversarial Hashing Network:
Kamran Ghasedi Dizaji (Univ. of Pittsburgh); Feng Zheng (Univ. of Pittsburgh); Najmeh Sadoughi (UT Dallas); Yanhua Yang (Xidian Univ.); Cheng Deng (Xidian Univ.); Heng Huang (Univ. of Pittsburgh)
5.Global Versus Localized Generative Adversarial Nets:
Guo-Jun Qi (Univ. of Central Florida); Liheng Zhang (Univ. of Central Florida); Hao Hu (Univ. of Central Florida); Marzieh Edraki (Univ. of Central Florida ); Jingdong Wang (Microsoft Research); Xian-Sheng Hua (Microsoft Research)
6.GAGAN: Geometry-Aware Generative Adversarial Networks:
Jean Kossaifi (Imperial College London); Linh Tran (Imperial College London); Yannis Panagakis (); Maja Pantic (Imperial College London)
图像合成:
1.ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing:
Chen-Hsuan Lin (Carnegie Mellon Univ.); Ersin Yumer (Argo AI); Oliver Wang (Adobe); Eli Shechtman (Adobe Research); Simon Lucey ()
2.SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis:
Wengling Chen (Georgia Inst. of Technology); James Hays (Georgia Tech)
3.Translating and Segmenting Multimodal Medical Volumes With Cycle- and Shape-Consistency Generative Adversarial Network:
Zizhao Zhang (Univ. of Florida); Lin Yang (); Yefeng Zheng (Simens )
4.High-Resolution Image Synthesis and Semantic Manipulation With Conditional GANs:
Ting-Chun Wang (NVIDIA); Ming-Yu Liu (NVIDIA); Jun-Yan Zhu (UC Berkeley); Andrew Tao (NVIDIA); Jan Kautz (NVIDIA); Bryan Catanzaro (NVIDIA)
5.TextureGAN: Controlling Deep Image Synthesis With Texture Patches:
Wenqi Xian (); Patsorn Sangkloy (Georgia Inst. of Technology); Varun Agrawal (); Amit Raj (Georgia Inst. of Technology); Jingwan Lu (Adobe Research); Chen Fang (Adobe Research); Fisher Yu (UC Berkeley); James Hays (Georgia Tech)
6.Eye In-Painting With Exemplar Generative Adversarial Networks:
Brian Dolhansky (Facebook); Cristian Canton Ferrer (Facebook)
7.Photographic Text-to-Image Synthesis With a Hierarchically-Nested Adversarial Network:
Zizhao Zhang (Univ. of Florida); Yuanpu Xie (Univ. of Florida); Lin Yang ()
8.Logo Synthesis and Manipulation With Clustered Generative Adversarial Networks:
Alexander Sage (ETH Zürich); Eirikur Agustsson (ETH Zürich); Radu Timofte (ETH Zürich); Luc Van Gool (ETH Zürich)
9.Cross-View Image Synthesis Using Conditional GANs:
Krishna Regmi (Univ. of Central Florida); Ali Borji (Univ. of Central Florida)
10.AttnGAN: Fine-Grained Text to Image Generation With Attentional Generative Adversarial Networks:
Tao Xu (Lehigh Univ.); Pengchuan Zhang (); Qiuyuan Huang (); Han Zhang (Rutgers); Zhe Gan (); Xiaolei Huang (Lehigh ); Xiaodong He ()
人脸相关:
1.Finding Tiny Faces in the Wild With Generative Adversarial Network:
Yancheng Bai (KAUST/Iscas); Yongqiang Zhang (Harbin Inst. of Technology/KAUST); Mingli Ding (); Bernard Ghanem ()
2.Learning Face Age Progression: A Pyramid Architecture of GANs:
Hongyu Yang (Beihang Univ.); Di Huang (); Yunhong Wang (); Anil K. Jain (MSU)
3.Super-FAN: Integrated Facial Landmark Localization and Super-Resolution
of Real-World Low Resolution Faces in Arbitrary Poses With GANs:
Adrian Bulat (); Georgios Tzimiropoulos ()
4.Face Aging With Identity-Preserved Conditional Generative Adversarial Networks:
Zongwei Wang (); Xu Tang (Baidu); Weixin Luo (ShanghaiTech Univ.); Shenghua Gao (ShanghaiTech Univ.)
5.Towards Open-Set Identity Preserving Face Synthesis:
Jianmin Bao (Univ. of Science and Technology of China); Dong Chen (Microsoft Research Asia); Fang Wen (); Houqiang Li (); Gang Hua
(Microsoft Research)
6.Weakly Supervised Facial Action Unit Recognition Through Adversarial Training:
Guozhu Peng (Univ. of Science and Technology of China); Shangfei Wang ()
7.FaceID-GAN: Learning a Symmetry Three-Player GAN for Identity-Preserving Face Synthesis:
Yujun Shen (Chinese Univ. of Hong Kong); Ping Luo (Chinese Univ. of Hong Kong); Junjie Yan (); Xiaogang Wang (Chinese Univ. of Hong Kong); Xiaoou Tang (Chinese Univ. of Hong Kong)
人体姿态相关:
1.GANerated Hands for Real-Time 3D Hand Tracking From Monocular RGB:
Franziska Mueller (MPI Informatics); Florian Bernard (MPI Informatics); Oleksandr Sotnychenko (MPI Informatics); Dushyant Mehta (MPI Informatics); Srinath Sridhar (); Dan Casas (MPI Informatics); Christian Theobalt (MPI Informatics)
2.Multistage Adversarial Losses for Pose-Based Human Image Synthesis:
Chenyang Si (Inst. of Automation, Chinese Academy of Sciences); Wei Wang (); Liang Wang (); Tieniu Tan (NLPR)
3.Deformable GANs for Pose-Based Human Image Generation:
Aliaksandr Siarohin (DISI, Univ. of Trento); Enver Sangineto (Univ. of Trento); Stéphane Lathuilière (INRIA); Nicu Sebe (Univ. of Trento)
4.Social GAN: Socially Acceptable Trajectories With Generative Adversarial Networks:
Agrim Gupta (Stanford Univ.); Justin Johnson (Stanford Univ.); Li Fei-Fei (Stanford Univ.); Silvio Savarese (); Alexandre Alahi (EPFL)
行人重识别:
1.Person Transfer GAN to Bridge Domain Gap for Person Re-Identification:
Longhui Wei (Peking Univ.); Shiliang Zhang (Peking Univ.); Wen Gao (); Qi Tian ()
2.Disentangled Person Image Generation:
Liqian Ma (KU Leuven); Qianru Sun (MPI Informatics); Stamatios Georgoulis (KU Leuven); Luc Van Gool (KU Leuven); Bernt Schiele (MPI Informatics); Mario Fritz (MPI Informatics)
3.Image-Image Domain Adaptation With Preserved Self-Similarity and Domain-Dissimilarity for Person Re-Identification:
Weijian Deng (Univ. of Chinese Academy); Liang Zheng (UT San Antonio); Qixiang Ye (); Guoliang Kang (Univ. of Technology Sydney); Yi Yang (); Jianbin Jiao ()
目标跟踪:
1.VITAL: VIsual Tracking via Adversarial Learning:
Yibing Song (Tencent AI Lab); Chao Ma (); Xiaohe Wu (Harbin Inst. of Technology); Lijun Gong (City Univ. of Hong Kong); Linchao Bao (Tencent AI Lab); Wangmeng Zuo (Harbin Inst. of Technology); Chunhua Shen (Univ. of Adelaide); Rynson W.H. Lau (City Univ. of Hong Kong); Ming-Hsuan Yang (UC Merced)
2.SINT++: Robust Visual Tracking via Adversarial Positive Instance Generation:
Xiao Wang (Anhui Univ.); Chenglong Li (Anhui Univ.); Bin Luo (); Jin Tang ()
目标检测:
1.Generative Adversarial Learning Towards Fast Weakly Supervised Detection:
Yunhan Shen (Xiamen Univ.); Rongrong Ji (); Shengchuan Zhang (); Wangmeng Zuo (Harbin Inst. of Technology); Yan Wang (Microsoft)
特征可解释性:
1.Visual Feature Attribution Using Wasserstein GANs:
Christian F. Baumgartner (ETH Zürich); Lisa M. Koch (ETH Zürich); Kerem Can Tezcan (ETH Zürich); Jia Xi Ang (ETH Zürich); Ender Konukoglu (ETH Zürich)
图像检索:
1.HashGAN: Deep Learning to Hash With Pair Conditional Wasserstein GAN:
Yue Cao (Tsinghua Univ.); Bin Liu (Tsinghua Univ.); Mingsheng Long (Tsinghua Univ.); Jianmin Wang ()
视频合成:
1.Learning to Generate Time-Lapse Videos Using Multi-Stage Dynamic Generative Adversarial Networks:
Wei Xiong (Univ. of Rochester); Wenhan Luo (Tencent AI Lab); Lin Ma (Tencent AI Lab); Wei Liu (); Jiebo Luo (Univ. of Rochester)
2.MoCoGAN: Decomposing Motion and Content for Video Generation:
Sergey Tulyakov (); Ming-Yu Liu (NVIDIA); Xiaodong Yang (NVIDIA); Jan Kautz (NVIDIA)
以上是关于CVPR2018资源汇总的主要内容,如果未能解决你的问题,请参考以下文章