随机森林和GBDT

Posted feynmania

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了随机森林和GBDT相关的知识,希望对你有一定的参考价值。

1.简介

随机森林和GBDT都属于集成学习。

集成学习可分为两大类:bagging和boosting;

随机森林(RF) ∈ bagging

GBDT ∈ boosting

 

2.随机森林:由多个决策树组成的一个集成学习算法,可用于分类和回归(分类效果好于回归),最终结果采用投票制得出。

数据集处理:

·  随机森林的“随机”体现在两个方面:①样本选择随机;②特征选择随机;

·  常采用交叉验证法进行数据集划分;

优点:可解决单个决策树的泛化能力差问题。

扩展:加权随机森林【给小类以大权重,给大类以小权重】

 

3.GBDT:梯度提升决策树

http://blog.csdn.net/puqutogether/article/details/41957089

http://www.cnblogs.com/pinard/p/6140514.html

 

4.RF和GBDT两种算法优缺点

https://www.cnblogs.com/hbwxcw/p/7163704.html

 

参考资料:

1.权重处理:https://wenku.baidu.com/view/07ba98cca0c7aa00b52acfc789eb172ded639998.html

2.sklearn随机森林特征筛选:https://www.cnblogs.com/xiaochouk/p/8583255.html,作者:小丑_jk

3.matlab随机森林组合分类器:https://www.cnblogs.com/zhouerba/p/8032604.html,作者:zhouerba

 

以上是关于随机森林和GBDT的主要内容,如果未能解决你的问题,请参考以下文章

随机森林和GBDT

随机森林

随机森林(Random Forest)和梯度提升树(GBDT)有什么区别?

随机森林、GBDT、Xgboost

GBDT和随机森林的区别

GBDT和随机森林的区别