pandas dataframe 操作技巧 总结

Posted -aye

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas dataframe 操作技巧 总结相关的知识,希望对你有一定的参考价值。

#中文
myfont = FontProperties(fname=r‘C:\Windows\Fonts\simhei.ttf‘, size=14)
import seaborn as sns
sns.set(font=myfont.get_name())

file = open(".xlsx", "rb")
data = pd.read_excel(file, sep="\t")
data = data.loc[(data[‘时间‘] > 0) & (data[‘时间‘] < 4320)]
drop_feat = ["编号",..., "状态"]
feat = [i for i in data.columns if i not in drop_feat]
data = data[feat]
print(data.isnull().sum() / len(data)) #看缺失比例,字段

# 读取文档以及,过滤填充数据, 筛选数据
# ddie = data.loc[(data[‘等级‘] == "Ⅲ") | (data[‘等级‘] == "Ⅳ")]
data = ddie.groupby([‘时段‘, ‘分类‘]).mean().reset_index()
dataForsize = ddie.groupby([‘时段‘, ‘分类‘]).size().reset_index()

dmean1 = data.loc[(data[‘类‘] == ‘‘) | (data[‘‘] == ‘‘)]
dsize1 = dataForsize.loc[(dataForsize[‘类‘] == ‘统‘) | (dataForsize[‘‘] == ‘‘)]
dmean1 = dmean1.groupby([‘挂‘]).mean() # 分组后 平均
dsize1 = dsize1.groupby([‘挂‘])[0].agg(sum) # 计 分组后 求和

# xx = list(range(0, 24)) 技巧得 x轴 连续坐标
y1 = dmean1["时间"]
x1 = y1._index._data  技巧 对应的 索引 不连续坐标 , 方法论:debug查 属性

plt.figure(figsize=(16,5))
plt.plot(x1, y1,color=‘blue‘)
plt.plot(x3, y3,color=‘red‘)
for i, (_x, _y) in enumerate(zip(x1, y1)):
plt.text(_x, _y, dsize1[x1[i]], color=‘blue‘, fontsize=12) # 关键 dsize1[x1[i]] 是从连续的i找不连续的x[i]的坐标来得到不连续的y值
plt.xticks(np.arange(24))
label = [ "其它"]
plt.legend(label, loc=0, ncol=2)
plt.xlabel(" 0-23小时")
plt.ylabel("时长")
plt.show()


































以上是关于pandas dataframe 操作技巧 总结的主要内容,如果未能解决你的问题,请参考以下文章

干货!整理了50个 Pandas 高频使用技巧,强烈建议收藏!

pandas DataFrame 的系列操作

100天精通Python(数据分析篇)——第55天:Pandas之DataFrame对象大总结

pandas操作Series和DataFrame的基本功能

12 个 Pandas 数据处理高频操作

pandas DataFrame行或列的删除方法