pandas操作Series和DataFrame的基本功能

Posted 左手十字

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pandas操作Series和DataFrame的基本功能相关的知识,希望对你有一定的参考价值。

reindex:重新索引

pandas对象有一个重要的方法reindex,作用:创建一个适应新索引的新对象

以Series为例

技术分享图片
 1 >>> series_obj = Series([4.5,1.3,5,-5.5],index=(a,b,c,d))
 2 >>> series_obj
 3 a    4.5
 4 b    1.3
 5 c    5.0
 6 d   -5.5
 7 dtype: float64
 8 >>> obj2 = series_obj.reindex([a,b,c,e,f])
 9 >>> obj2
10 a    4.5
11 b    1.3
12 c    5.0
13 e    NaN
14 f    NaN
15 dtype: float64
View Code

重新索引的时候可以自动填充Nan值

技术分享图片
1 >>> obj3 = series_obj.reindex([a,b,c,e,f],fill_value=0)
2 >>> obj3
3 a    4.5
4 b    1.3
5 c      5
6 e      0
7 f      0
View Code

 

对于时间序列这样的有序数据,重新索引可能需要做一些插值操作,reindex的method参数提供此功能。

method的可选选项有:

ffill或pad :前向填充或搬运值

bfill或backfill:后向填充或搬运值

不存在前向或后项的行自动填充Nan

技术分享图片
 1 >>> obj4 = Series([red,blue,green],index=[0,2,4])
 2 >>> obj4
 3 0      red
 4 2     blue
 5 4    green
 6 dtype: object
 7 >>> obj4.reindex(range(6),method=ffill)
 8 0      red
 9 1      red
10 2     blue
11 3     blue
12 4    green
13 5    green
14 dtype: object
View Code

DataFrame的重新索引

只传入一个序列的时候,默认是重新索引“行”,可以用关键字参数来定义行索引(index)和列索引(columns)。

技术分享图片
 1 >>> frame = DataFrame(np.arange(9).reshape((3,3)),index = [a,b,c],columns = [Ohio,Texas,"Cali"])
 2 >>> frame2 = frame.reindex([a,b,c,d])
 3 >>> frame2
 4    Ohio  Texas  Cali
 5 a   0.0    1.0   2.0
 6 b   3.0    4.0   5.0
 7 c   6.0    7.0   8.0
 8 d   NaN    NaN   NaN
 9 
10 >>> frame3 = frame.reindex(columns = [Ohio,Texas,Cali,Wile],index=[a,b,c,d],fill_value=4)
11 >>> frame3
12    Ohio  Texas  Cali  Wile
13 a     0      1     2     4
14 b     3      4     5     4
15 c     6      7     8     4
16 d     4      4     4     4
17 >>>
View Code

如果对DataFrame的行和列重新索引的时候,插值只能按行应用

如果利用ix的标签索功能,重新索引会变得更简洁

技术分享图片
1 >>> frame5 = frame.ix[[a,b,c,d], [Ohio,Texas,Cali,Wile]]
2 >>> frame5
3    Ohio  Texas  Cali  Wile
4 a   0.0    1.0   2.0   NaN
5 b   3.0    4.0   5.0   NaN
6 c   6.0    7.0   8.0   NaN
7 d   NaN    NaN   NaN   NaN
View Code

drop:丢弃指定轴上的项

技术分享图片
>>> obj = Series(np.arange(5),index=[a,b,c,d,e])
>>> obj
a    0
b    1
c    2
d    3
e    4
dtype: int32
>>> new_obj = obj.drop(b)
>>> new_obj
a    0
c    2
d    3
e    4

>>> new_obj2 = obj.drop([b,c])
>>> new_obj2
a    0
d    3
e    4
dtype: int32
View Code
#dataframe
>>> frame = DataFrame(np.arange(16).reshape((4,4)),index=[a,b,c,d],columns=[one,two,three,four])
>>> frame
   one  two  three  four
a    0    1      2     3
b    4    5      6     7
c    8    9     10    11
d   12   13     14    15
>>> new_frame = frame.drop(a)
>>> new_frame
   one  two  three  four
b    4    5      6     7
c    8    9     10    11
d   12   13     14    15
>>> new_frame2 = frame.drop([two,four],axis = 1)
>>> new_frame2
   one  three
a    0      2
b    4      6
c    8     10
d   12     14

索引、选取和过滤

Series的索引,既可以是类似NumPy数组的索引,也可以是自定义的index

>>> obj
a    0
b    1
c    2
d    3
e    4
dtype: int32
>>> obj[a]
0
>>> obj[1]
1
注意:利用标签的切片运算,标签的右侧是封闭区间的,即包含末端。 >>> obj[a:c] a 0 b 1 c 2 dtype: int32 >>> obj[3:4] d 3 dtype: int32 >>> obj[2:3] c 2 dtype: int32 >>> obj[[3,1]] d 3 b 1 dtype: int32 >>> obj[[a,c]] a 0 c 2 dtype: int32 >>>

通过索引修改值

>>> obj[[b,d]] *=2
>>> obj
a    0
b    2
c    2
d    6
e    4
dtype: int32

 

dataframe的索引:

通过直接索引只能获取列

>>> frame
   one  two  three  four
a    0    1      2     3
b    4    5      6     7
c    8    9     10    11
d   12   13     14    15
>>> frame[a]
KeyError: a
>>> frame[one]
a     0
b     4
c     8
d    12
Name: one, dtype: int32
>>> frame[[one,four]]
   one  four
a    0     3
b    4     7
c    8    11
d   12    15

通过切片或布尔型数组,选取的是行

>>> frame[1:3] #不闭合区间
   one  two  three  four
b    4    5      6     7
c    8    9     10    11
>>> frame[frame[three] > 8]
   one  two  three  four
c    8    9     10    11
d   12   13     14    15
>>>

DataFrame的索引字段ix

>>> frame.ix[a] #按照行索引
one      0
two      1
three    2
four     3
Name: a, dtype: int32
>>> frame.ix[[b,d]]
   one  two  three  four
b    4    5      6     7
d   12   13     14    15
>>> frame.ix[1]#同样是按照行索引
one      4
two      5
three    6
four     7
Name: b, dtype: int32
>>> frame.ix[1:3]
   one  two  three  four
b    4    5      6     7
c    8    9     10    11

 

>>> frame.ix[1:2,[2,3,1]]
   three  four  two
b      6     7    5
>>> frame.ix[1:3,[2,3,1]]
   three  four  two
b      6     7    5
c     10    11    9
>>> frame.ix[[b,d],[one,three]]
   one  three
b    4      6
d   12     14
>>> frame.ix[[b,d],[3,1,2]]
   four  two  three
b     7    5      6
d    15   13     14
>>> frame.ix[:,[2,3,1]]# 选取所有行
   three  four  two
a      2     3    1
b      6     7    5
c     10    11    9
d     14    15   13

>>> frame.ix[frame.three >5,:3]
one two three
b 4 5 6
c 8 9 10
d 12 13 14

 

算术运算和数据对齐

>>> s1 = Series([1.3,4.5,6.6,3.4],index=[a,b,c,d])
>>> s2 = Series([1,2,3,4,5,6,7],index=[a,b,c,d,e,f,g])
>>> s1+s2
a    2.3
b    6.5
c    9.6
d    7.4
e    NaN
f    NaN
g    NaN
dtype: float64
#不重叠的索引处引入缺失值
#DataFrame也是同理

再算术方法中填充缺失值

>>> df1 = DataFrame(np.arange(12).reshape((3,4)),columns=list(abcd))
>>> df2 = DataFrame(np.arange(20).reshape((4,5)),columns=list(abcde))
>>> df1+df2#普通的算术运算会产生缺失值
      a     b     c     d   e
0   0.0   2.0   4.0   6.0 NaN
1   9.0  11.0  13.0  15.0 NaN
2  18.0  20.0  22.0  24.0 NaN
3   NaN   NaN   NaN   NaN NaN
#用算术运算方法,可以填充缺失值
>>> df1.add(df2,fill_value=0)
      a     b     c     d     e
0   0.0   2.0   4.0   6.0   4.0
1   9.0  11.0  13.0  15.0   9.0
2  18.0  20.0  22.0  24.0  14.0
3  15.0  16.0  17.0  18.0  19.0
>>>

算术运算方法有

add 加法

sub 减法

div 除法

mul 乘法

DataFrame和Series之间的运算

>>> frame
   one  two  three  four
a    0    1      2     3
b    4    5      6     7
c    8    9     10    11
d   12   13     14    15
>>> series = frame.ix[0]
>>> series
one      0
two      1
three    2
four     3
Name: a, dtype: int32
>>> frame - series
   one  two  three  four
a    0    0      0     0
b    4    4      4     4
c    8    8      8     8
d   12   12     12    12
>>>

两者之间的运算会将Series的索引匹配到DataFrame的列,然后沿着行一直向下广播。

 

如果某个索引值在DataFrame的列或Series的索引中找不到,则参与运算的连个对象就会被重新索引以形成并集。

>>> series2 = Series(range(3),index = [two,four,five])
>>> frame +series2
   five  four  one  three   two
a   NaN   4.0  NaN    NaN   1.0
b   NaN   8.0  NaN    NaN   5.0
c   NaN  12.0  NaN    NaN   9.0
d   NaN  16.0  NaN    NaN  13.0

如果希望匹配行,且在列上传播,则必须使用算术方法

>>> series3 = frame[two]
>>> frame.sub(series3,axis = 0)
   one  two  three  four
a   -1    0      1     2
b   -1    0      1     2
c   -1    0      1     2
d   -1    0      1     2
>>>

 








以上是关于pandas操作Series和DataFrame的基本功能的主要内容,如果未能解决你的问题,请参考以下文章

pandas DataFrame和Series

Pandas初体验之数据结构——Series和DataFrame

利用Python进行数据分析:Pandas(Series+DataFrame)

pandas 的数据结构(Series, DataFrame)

为啥Pandas的DataFrame使用Series而非直接使用矩阵进行存储和数据操纵?

大数据清洗3(pandas - 基本数据结构)