卷积与傅里叶变换

Posted sownchz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了卷积与傅里叶变换相关的知识,希望对你有一定的参考价值。

很多朋友和我一样,工科电子类专业,学了一大堆信号方面的课,什么都没学懂,背了公式考了试,然后毕业了。

   先说"卷积有什么用"这个问题。(有人抢答,"卷积"是为了学习"信号与系统"这门课的后续章节而存在的。我大吼一声,把他拖出去枪毙!)

   讲一个故事:

   张三刚刚应聘到了一个电子产品公司做测试人员,他没有学过"信号与系统"这门课程。一天,他拿到了一个产品,开发人员告诉他,产品有一个输入端,有一个输出端,有限的输入信号只会产生有限的输出。

   然后,经理让张三测试当输入sin(t)(t<1秒)信号的时候(有信号发生器),该产品输出什么样的波形。张三照做了,画了一个波形图。

   "很好!"经理说。然后经理给了张三一叠A4纸: "这里有几千种信号,都用公式说明了,输入信号的持续时间也是确定的。你分别测试以下我们产品的输出波形是什么吧!"

   这下张三懵了,他在心理想"上帝,帮帮我把,我怎么画出这些波形图呢?"

   于是上帝出现了: "张三,你只要做一次测试,就能用数学的方法,画出所有输入波形对应的输出波形"。

   上帝接着说:"给产品一个脉冲信号,能量是1焦耳,输出的波形图画出来!"

   张三照办了,"然后呢?"

   上帝又说,"对于某个输入波形,你想象把它微分成无数个小的脉冲,输入给产品,叠加出来的结果就是你的输出波形。你可以想象这些小脉冲排着队进入你的产品,每个产生一个小的输出,你画出时序图的时候,输入信号的波形好像是反过来进入系统的。"

   张三领悟了:" 哦,输出的结果就积分出来啦!感谢上帝。这个方法叫什么名字呢?"

   上帝说:"叫卷积!"

   从此,张三的工作轻松多了。每次经理让他测试一些信号的输出结果,张三都只需要在A4纸上做微积分就是提交任务了!

----------------------------------------

   张三愉快地工作着,直到有一天,平静的生活被打破。

   经理拿来了一个小的电子设备,接到示波器上面,对张三说: "看,这个小设备产生的波形根本没法用一个简单的函数来说明,而且,它连续不断的发出信号!不过幸好,这个连续信号是每隔一段时间就重复一次的。张三,你来测试以下,连到我们的设备上,会产生什么输出波形!"

   张三摆摆手:"输入信号是无限时长的,难道我要测试无限长的时间才能得到一个稳定的,重复的波形输出吗?"

   经理怒了:"反正你给我搞定,否则炒鱿鱼!"

   张三心想:"这次输入信号连公式都给出来,一个很混乱的波形;时间又是无限长的,卷积也不行了,怎么办呢?"

   及时地,上帝又出现了:"把混乱的时间域信号映射到另外一个数学域上面,计算完成以后再映射回来"

   "宇宙的每一个原子都在旋转和震荡,你可以把时间信号看成若干个震荡叠加的效果,也就是若干个可以确定的,有固定频率特性的东西。"

   "我给你一个数学函数f,时间域无限的输入信号在f域有限的。时间域波形混乱的输入信号在f域是整齐的容易看清楚的。这样你就可以计算了"

   "同时,时间域的卷积在f域是简单的相乘关系,我可以证明给你看看"

   "计算完有限的程序以后,取f(-1)反变换回时间域,你就得到了一个输出波形,剩下的就是你的数学计算了!"

   张三谢过了上帝,保住了他的工作。后来他知道了,f域的变换有一个名字,叫做傅里叶,什么什么... ...

----------------------------------------

   再后来,公司开发了一种新的电子产品,输出信号是无限时间长度的。这次,张三开始学拉普拉斯了......

   PS:

不是我们学的不好,是因为教材不好,老师讲的也不好。

很欣赏Google的面试题: 用3句话像老太太讲清楚什么是数据库。这样的命题非常好,因为没有深入的理解一个命题,没有仔细的思考一个东西的设计哲学,我们就会陷入细节的泥沼: 背公式,数学推导,积分,做题;而没有时间来回答"为什么要这样"。做大学老师的做不到"把厚书读薄"这一点,讲不出哲学层面的道理,一味背书和翻讲ppt,做着枯燥的数学证明,然后责怪"现在的学生一代不如一代",有什么意义呢?!

再分享一下我老师大神的人工智能教程吧。零基础!通俗易懂!风趣幽默!还带黄段子!希望你也加入到我们人工智能的队伍中来!https://blog.csdn.net/jiangjunshow

以上是关于卷积与傅里叶变换的主要内容,如果未能解决你的问题,请参考以下文章

学习小波变换与傅里叶变换

图像处理与傅里叶变换

图像处理与傅里叶变换

图像处理与傅里叶变换

DFT与傅里叶变换的理解

数字图像处理 - 频率域处理关于傅里叶级数与傅里叶变换