tiny4412 --Uboot移植 时钟
Posted chu-yi
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了tiny4412 --Uboot移植 时钟相关的知识,希望对你有一定的参考价值。
开发环境:win10 64位 + VMware12 + Ubuntu14.04 32位
1、时钟体系
exynos4412芯片时钟体系的介绍在《Exynos 4412 SCP_Users Manual_Ver.0.10.00_Preliminary.pdf》的第七章节。
据P447介绍:其有三个时钟源:
- XRTCXTI:32.768KZH,用于RTC时钟的实时时钟源。有XRTCXTI、XRTCXTO两个引脚,且之间需要10mΩ的并联电阻
- XXTI:12MHZ--50MZH,APLL、MPLL、VPLL和EPLL可使用此时钟作为适当模块的电源。可以仅用于测试,不用时接地
- XUSBXTI:24MZH。因为IROM设计基于24兆赫输入时钟。有XUSBXTI、XUSBXTO两个引脚,且之间需要5mΩ的并联电阻
在友善之臂tiny4412的开发板中, XRTCXTI 上没有外接晶振,系统时钟来源是XUSBXTI引脚上接的24MH 晶振,如下图所示:
2、启动方式
由P455页可看出XOM[0]接在FINPLL上,在结合第五章节内容
OM[5:1] | 启动设备 |
---|---|
5b’00010 | SDMMC_CH2 |
5b’00100 | eMMC44_CH4 |
可看出OM[0]=1;OM[1]=0;OM[4]=0;OM[5]=0;
OM[2]=1,OM[3]=0时,为SD卡启动;
OM[2]=0,OM[3]=1时,为eMMC启动;
而正是由于OM[1]=1;表明芯片选择XUSBXTI为时钟源
3、时钟代码
diff --git a/arch/arm/mach-exynos/Makefile b/arch/arm/mach-exynos/Makefile index 5f8b6ba..5889802 100644 --- a/arch/arm/mach-exynos/Makefile +++ b/arch/arm/mach-exynos/Makefile @@ -15,7 +15,7 @@ ifdef CONFIG_SPL_BUILD obj-$(CONFIG_EXYNOS5) += clock_init_exynos5.o obj-$(CONFIG_EXYNOS5) += dmc_common.o dmc_init_ddr3.o obj-$(CONFIG_EXYNOS4210)+= dmc_init_exynos4.o clock_init_exynos4.o -obj-$(CONFIG_EXYNOS4412)+= dmc_init_exynos4.o clock_init_exynos4.o +obj-$(CONFIG_EXYNOS4412)+= dmc_init_exynos4412.o clock_init_exynos4412.o obj-y += spl_boot.o tzpc.o obj-y += lowlevel_init.o
在mach-exynos下,新建clock_init_exynos4412.c和exynos4412_setup.h
clock
/* * Clock Initialization for board based on EXYNOS4412 * * 2016 * Modified by AP0904225 <[email protected]> * * Copyright (C) 2013 Samsung Electronics * Rajeshwari Shinde <[email protected]> * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <config.h> #include <asm/io.h> #include <asm/arch/cpu.h> #include <asm/arch/clk.h> #include <asm/arch/clock.h> #include "common_setup.h" #include "exynos4412_setup.h" /* * system_clock_init: Initialize core clock and bus clock. * void system_clock_init(void) */ void system_clock_init(void) { unsigned int set, clr, clr_src_cpu, clr_pll_con0, clr_src_dmc; struct exynos4x12_clock *clk =(struct exynos4x12_clock *) samsung_get_base_clock(); /* * APLL= 1400 MHz * MPLL=800 MHz * EPLL=96 MHz * VPLL=108 MHz * freq (ARMCLK) = 1400 MHz at 1.3 V * freq (ACLK_COREM0) = 350 MHz at 1.3V * freq (ACLK_COREM1) = 188 MHz at 1.3 V * freq (PERIPHCLK) = 1400 MHz at 1.3 V * freq (ATCLK) = 214 MHz at 1.3 V * freq (PCLK_DBG) = 107 MHz at 1.3 V * freq (SCLK_DMC) = 400 MHz at 1.0 V * freq (ACLK_DMCD) = 200 MHz at 1.0 V * freq (ACLK_DMCP) = 100 MHz at 1.0 V * freq (ACLK_ACP) = 200 MHz at 1.0 V * freq (PCLK_ACP) = 100 MHz at 1.0 V * freq (SCLK_C2C) = 400 MHz at 1.0 V * freq (ACLK_C2C) = 200 MHz at 1.0 V * freq (ACLK_GDL) = 200 MHz at 1.0 V * freq (ACLK_GPL) = 100 MHz at 1.0 V * freq (ACLK_GDR) = 200 MHz at 1.0 V * freq (ACLK_GPR) = 100 MHz at 1.0 V * freq (ACLK_400_MCUISP) = 400 MHz at 1.0 V * freq (ACLK_200) = 160 MHz at 1.0 V * freq (ACLK_100) = 100 MHz at 1.0 V * freq (ACLK_160) = 160 MHz at 1.0 V * freq (ACLK_133) = 133 MHz at 1.0 V * freq (SCLK_ONENAND) = 160 MHz at 1.0 V */ /* *before set system clocks,we switch system clocks src to FINpll */ /* * Bit values: 0 ; 1 * MUX_APLL_SEL: FIN_PLL ; FOUT_APLL * MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL * MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C * MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL */ clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1); set = MUX_APLL_SEL(0) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) | MUX_MPLL_USER_SEL_C(0); clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set); /* Wait for mux change */ while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING) continue; /* ****************************************************** * Step 1: Set Clock divider ****************************************************** */ /*=====================set APLL related dividers(CMU_CPU)==============================*/ /* * Set dividers for MOUTcore * MOUTcore = MOUTapll = 1400 MHz * SCLKapll = MOUTapll / (APLL_RATIO 1) = 700 MHz (DIVapll:APLL_RATIO=1) * ARMCLK = MOUTcore / (ratio 1) = 1400 MHz (DIVcore:CORE_RATIO=0;DIVcore2:CORE2_RATIO=0) * ACLK_COREM0 = ARMCLK / (COREM0_RATIO 1) = 355 MHz (DIVcorem0:COREM0_RATIO=3) * ACLK_COREM1 = ARMCLK / (COREM1_RATIO 1) = 188 MHz (DIVcorem1:COREM1_RATIO=7) * PERIPHCLK = ARMCLK / (PERIPH_RATIO 1) = 1400 MHz (DIVperiph:PERIPH_RATIO=0) * OUTatb = MOUTcore / (ATB_RATIO 1) = 200 MHz (DIVatb:ATB_RATIO=6) * ATCLK = OUTatb = 200 MHz * PCLK_DBG = OUTatb / (PCLK_DBG_RATIO 1) = 100 MHz (PCLK_DBG_RATIO=1) */ clr = APLL_RATIO(7) |CORE_RATIO(7)| CORE2_RATIO(7)| COREM0_RATIO(7) | COREM1_RATIO(7) | PERIPH_RATIO(7) | ATB_RATIO(7) | PCLK_DBG_RATIO(7) ; set = APLL_RATIO(1) |CORE_RATIO(0) | CORE2_RATIO(0) | COREM0_RATIO(3) | COREM1_RATIO(7)| PERIPH_RATIO(0) | ATB_RATIO(6) | PCLK_DBG_RATIO(1) ; clrsetbits_le32(&clk->div_cpu0, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_cpu0) & DIV_STAT_CPU0_CHANGING) continue; /* Set dividers for MOUThpm * MOUThpm = MOUTapll = 1400 MHz * OUTcopy = MOUThpm / (COPY_RATIO 1) = 200 (DIVcopy:COPY_RATIO=6) * sclkhpm = OUTcopy / (HPM_RATIO 1) = 200 (DIVhpm:HPM_RATIO=0) * ACLK_CORES = ARMCLK / (CORES_RATIO 1) = 233 (DIVcores:CORES_RATIO=5) */ clr = COPY_RATIO(7) | HPM_RATIO(7) | CORES_RATIO(7); set = COPY_RATIO(6) | HPM_RATIO(0) | CORES_RATIO(5); clrsetbits_le32(&clk->div_cpu1, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_cpu1) & DIV_STAT_CPU1_CHANGING) continue; /*=====================set MPLL related dividers(CMU_DMC)==============================*/ /* * Set CLK_DIV_DMC0 * MOUTmpll = SCLKmpll = 800 MHz * MOUTdmc_bus = SCLKmpll = 800 MHz * MOUTdphy = SCLKmpll = 800 MHz * * SCLK_DMC = MOUTdmc_bus / (DMC_RATIO 1) = 400MHz (DIVdmc:DMC_RATIO=1) * ACLK_DMCD = SCLK_DMC / (DMCD_RATIO 1) = 200MHz (DIVdmcd:DMCD_RATIO=1) * ACLK_DMCP = ACLK_DMCD / (DMCP_RATIO 1) = 100MHz (DIVdmcp:DMCP_RATIO=1) * ACLK_ACP = MOUTdmc_bus / (ACP_RATIO 1) = 200MHz (DIVacp:ACP_RATIO=3) * PCLK_ACP = ACLK_ACP / (ACP_PCLK_RATIO 1) = 100MHz (DIVacp_pclk:ACP_PCLK_RATIO=1) * SCLK_DPHY = MOUTdphy / (DPHY_RATIO 1) = 400MHz (DIVdphy:DPHY_RATIO=1) */ clr = DMC_RATIO(7) | DMCD_RATIO(7) | DMCP_RATIO(7) | ACP_RATIO(7) | ACP_PCLK_RATIO(7) | DPHY_RATIO(7); set = DMC_RATIO(1) | DMCD_RATIO(1) | DMCP_RATIO(1) | ACP_RATIO(3) | ACP_PCLK_RATIO(1) | DPHY_RATIO(1); clrsetbits_le32(&clk->div_dmc0, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_dmc0) & DIV_STAT_DMC0_CHANGING) continue; /* * Set CLK_DIV_DMC1 * MOUTmpll = SCLKmpll = 800 MHz * MOUTc2c = SCLKmpll = 800 Mhz * MOUTpwi = SCLKmpll = 800 MHz * MOUTg2d_acp = SCLKmpll = 800 MHz * * SCLK_C2C = MOUTc2c / (C2C_RATIO 1) = 400MHz (DIVc2c:C2C_RATIO=1) * ACLK_C2C = SCLK_C2C / (C2C_ACLK_RATIO 1) = 200MHz (DIVc2c_aclk:C2C_ACLK_RATIO=1) * SCLK_PWI = MOUTpwi / (PWI_RATIO 1) = 100MHz (DIVpwi:PWI_RATIO=7) * SCLK_G2D_ACP = MOUTg2d_acp / (G2D_ACP_RATIO 1) = 200MHz (G2D_ACP_RATIO=3) * IECDPMCLKEN = ACLK_DMCP/( DPM_RATIO 1) = 50MHz(DIVdpm:DPM_RATIO=1) * IECDVSEMCLKEN = ACLK_DMCP/( DVSEM_RATIO 1) = 50MHz(DIVdvsem:DVSEM_RATIO=1) */ clr = C2C_RATIO(7) | C2C_ACLK_RATIO(7) | PWI_RATIO(15) | G2D_ACP_RATIO(15) | DVSEM_RATIO(127) | DPM_RATIO(127); set = C2C_RATIO(1) | C2C_ACLK_RATIO(1) | PWI_RATIO(7) | G2D_ACP_RATIO(3) | DVSEM_RATIO(1) | DPM_RATIO(1); clrsetbits_le32(&clk->div_dmc1, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_dmc1) & DIV_STAT_DMC1_CHANGING) continue; /*=====================set CMU_TOP related dividers==============================*/ /* * Set CLK_DIV_TOP * SCLKmll_user_t = SCLKmpll = 800 MHz * MOUTACLK_400_MC = SCLKmpll = 800 MHz * MOUTACLK_400_MCUISP = MOUTACLK_400_MC/(ACLK_400_MCUISP_RATIO 1) = 400MHz (DIVaclk_400_mc:ACLK_400_MCUISP_RATIO=1) * MOUTACLK_200 = SCLKmpll = 800 MHz * ACLK_200 = MOUTACLK_200/(ACLK_200_RATIO 1) = 160MHz (DIVaclk_200:ACLK_200_RATIO=4) * MOUTACLK_266_gps = SCLKmpll = 800 MHz * ACLK_266_GPS = [MOUTACLK_266_GPS /(ACLK_266_GPS_RATIO 1)] = 266MHz (DIVaclk_266_gps:ACLK_266_GPS_RATIO=2) * MOUTACLK_100 = SCLKmpll = 800 MHz * ACLK_100 = [MOUTACLK_100/(ACLK_100_RATIO 1)] = 100MHz (DIVaclk_100:ACLK_100_RATIO=7) * MOUTACLK_160 = SCLKmpll = 800 MHz * ACLK_160 = [MOUTACLK_160 /(ACLK_160_RATIO 1)] = 160MHz (DIVaclk_160:ACLK_160_RATIO=4) * MOUTACLK_133 = SCLKmpll = 800 MHz * ACLK_133 = [MOUTACLK_133 /(ACLK_133_RATIO 1)] = 133MHz (DIVaclk_133:ACLK_133_RATIO=5) * MOUTonenand = MOUTonenand_1 = ACLK_133MHz * SCLK_ONENAND = [MOUTONENAND_1 /(ONENAND_RATIO 1)] = 66MHz (DIVonenand:ONENAND_RATIO=1) */ clr = ACLK_400_MCUISP_RATIO(7) | ACLK_200_RATIO(7) | ACLK_266_GPS_RATIO(7) | ACLK_100_RATIO(15) | ACLK_160_RATIO(7) | ACLK_133_RATIO(7) |ONENAND_RATIO(7); set = ACLK_400_MCUISP_RATIO(1) | ACLK_200_RATIO(4) | ACLK_266_GPS_RATIO(2) | ACLK_100_RATIO(7) | ACLK_160_RATIO(4) | ACLK_133_RATIO(5) |ONENAND_RATIO(1); clrsetbits_le32(&clk->div_top, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_top) & DIV_STAT_TOP_CHANGING) continue; /*=====================set CMU_LEFTBUS related dividers==============================*/ /* * Set CLK_DIV_LEFTBUS * MOUTgdl = SCLKmpll = 800 MHz * ACLK_GDL = MOUTgdl/(GDL_RATIO 1) = 200MHz (DIVgdl:GDL_RATIO=3) * ACLK_GPL = ACLK_GDL/(GPL_RATIO 1) = 100MHz (DIVgpl:GPL_RATIO=1) */ clr = GDL_RATIO(7) | GPL_RATIO(7) ; set = GDL_RATIO(3) | GPL_RATIO(1) ; clrsetbits_le32(&clk->div_leftbus, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_leftbus) & DIV_STAT_LEFTBUS_CHANGING) continue; /*=====================set CMU_RIGHTBUS related dividers==============================*/ /* * Set CLK_DIV_RIGHTBUS * MOUTgdr = SCLKmpll = 800 MHz * ACLK_GDR = MOUTgdr/(GDR_RATIO 1) = 200MHz (DIVgdl:GDR_RATIO=3) * ACLK_GPL = ACLK_GDL/(GPR_RATIO 1) = 100MHz (DIVgpl:GPR_RATIO=1) */ clr = GDR_RATIO(7) | GPR_RATIO(7) ; set = GDR_RATIO(3) | GPR_RATIO(1) ; clrsetbits_le32(&clk->div_rightbus, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_rightbus) & DIV_STAT_LEFTBUS_CHANGING) continue; /*=====================set other dividers==============================*/ /* CLK_DIV_PERIL0 (UART0-4 dividers ) */ /* * MOUTuart0-4 = SCLKMPLL_USER_T =800MHz * * SCLK_UARTx = MOUTuartX / (UARTx_RATIO 1) = 100MHz (DIVuart0-4:UARTx_RATIO=7) */ clr = UART0_RATIO(15) | UART1_RATIO(15) | UART2_RATIO(15) | UART3_RATIO(15) | UART4_RATIO(15); set = UART0_RATIO(7) | UART1_RATIO(7) | UART2_RATIO(7) | UART3_RATIO(7) | UART4_RATIO(7); clrsetbits_le32(&clk->div_peril0, clr, set); while (readl(&clk->div_stat_peril0) & DIV_STAT_PERIL0_CHANGING) continue; /* CLK_DIV_FSYS1 */ clr = MMC0_RATIO(15) | MMC0_PRE_RATIO(255) | MMC1_RATIO(15) | MMC1_PRE_RATIO(255); /* * For MOUTmmc0-3 = 800 MHz (MPLL) * * DOUTmmc1 = MOUTmmc1 / (ratio 1) = 100 (7) * sclk_mmc1 = DOUTmmc1 / (ratio 1) = 50 (1) * DOUTmmc0 = MOUTmmc0 / (ratio 1) = 100 (7) * sclk_mmc0 = DOUTmmc0 / (ratio 1) = 50 (1) */ set = MMC0_RATIO(7) | MMC0_PRE_RATIO(1) | MMC1_RATIO(7) | MMC1_PRE_RATIO(1); clrsetbits_le32(&clk->div_fsys1, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_fsys1) & DIV_STAT_FSYS1_CHANGING) continue; /* CLK_DIV_FSYS2 */ clr = MMC2_RATIO(15) | MMC2_PRE_RATIO(255) | MMC3_RATIO(15) | MMC3_PRE_RATIO(255); /* * For MOUTmmc0-3 = 800 MHz (MPLL) * * DOUTmmc3 = MOUTmmc3 / (ratio 1) = 100 (7) * sclk_mmc3 = DOUTmmc3 / (ratio 1) = 50 (1) * DOUTmmc2 = MOUTmmc2 / (ratio 1) = 100 (7) * sclk_mmc2 = DOUTmmc2 / (ratio 1) = 50 (1) */ set = MMC2_RATIO(7) | MMC2_PRE_RATIO(1) | MMC3_RATIO(7) | MMC3_PRE_RATIO(1); clrsetbits_le32(&clk->div_fsys2, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_fsys2) & DIV_STAT_FSYS2_CHANGING) continue; /* CLK_DIV_FSYS3 */ clr = MMC4_RATIO(15) | MMC4_PRE_RATIO(255); /* * For MOUTmmc4 = 800 MHz (MPLL) * * DOUTmmc4 = MOUTmmc4 / (ratio 1) = 100 (7) * sclk_mmc4 = DOUTmmc4 / (ratio 1) = 100 (0) */ set = MMC4_RATIO(7) | MMC4_PRE_RATIO(0); clrsetbits_le32(&clk->div_fsys3, clr, set); /* Wait for divider ready status */ while (readl(&clk->div_stat_fsys3) & DIV_STAT_FSYS3_CHANGING) continue; /* * Step 2: Set APLL, MPLL, EPLL, VPLL locktime */ clr = PLL_LOCKTIME(65535); /*====== APLL locktime [APLL = 1400MHz : SDIV(0) , PDIV(3) , MDIV(175)] =====*/ set = PLL_LOCKTIME( PDIV(3) * 270 ); clrsetbits_le32(&clk->apll_lock, clr, set); /*====== MPLL locktime [MPLL = 800MHz : SDIV(0) , PDIV(3) , MDIV(100)] =====*/ set = PLL_LOCKTIME( PDIV(3) * 270 ); clrsetbits_le32(&clk->mpll_lock, clr, set); /*====== EPLL locktime [EPLL = 96MHz : SDIV(3) , PDIV(2) , MDIV(64)] =====*/ set = PLL_LOCKTIME( PDIV(2) * 3000 ); clrsetbits_le32(&clk->epll_lock, clr, set); /*====== VPLL locktime [VPLL = 108MHz : SDIV(3) , PDIV(2) , MDIV(72)] =====*/ set = PLL_LOCKTIME( PDIV(2) * 3000 ); clrsetbits_le32(&clk->vpll_lock, clr, set); /* * Step 3: Set PLL PMS values and enable PLL * 1.Set PDIV, MDIV, and SDIV values for APLL, MPLL, EPLL, VPLL * 2.Turn on APLL, MPLL, EPLL, VPLL */ /**************** Set APLL to 1400MHz ****************/ /*APLL_CON1*/ clr = AFC(15) | LOCK_CON_DLY(15) | LOCK_CON_IN(3) | LOCK_CON_OUT(3) |FEED_EN(1)| AFC_ENB(1) | DCC_ENB(1) | BYPASS(1) |RESV0(1) | RESV1(1); set = AFC(0) | LOCK_CON_DLY(8) | LOCK_CON_IN(3) | LOCK_CON_OUT(0) |FEED_EN(0)| AFC_ENB(0) | DCC_ENB(0) | BYPASS(0) |RESV0(1) | RESV1(0); clrsetbits_le32(&clk->apll_con1, clr, set); /*APLL_CON0*/ clr_pll_con0 = SDIV(7) | PDIV(63) | MDIV(1023) | FSEL(1); set = SDIV(0) | PDIV(3) | MDIV(175) | FSEL(0) | PLL_ENABLE(1); clrsetbits_le32(&clk->apll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */ while (!(readl(&clk->apll_con0) & PLL_LOCKED_BIT)) continue; /**************** Set MPLL to 800MHz ****************/ /*MPLL_CON1*/ clr = AFC(15) | LOCK_CON_DLY(15) | LOCK_CON_IN(3) | LOCK_CON_OUT(3) |FEED_EN(1)| AFC_ENB(1) | DCC_ENB(1) | BYPASS(1) |RESV0(1) | RESV1(1); set = AFC(0) | LOCK_CON_DLY(8) | LOCK_CON_IN(3) | LOCK_CON_OUT(0) |FEED_EN(0)| AFC_ENB(0) | DCC_ENB(0) | BYPASS(0) |RESV0(1) | RESV1(0); clrsetbits_le32(&clk->mpll_con1, clr, set); /*MPLL_CON0*/ set = SDIV(0) | PDIV(3) | MDIV(100) | FSEL(0) | PLL_ENABLE(1); clrsetbits_le32(&clk->mpll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */ while (!(readl(&clk->mpll_con0) & PLL_LOCKED_BIT)) continue; /**************** Set EPLL to 96MHz ****************/ /*EPLL_CON2*/ clr = BYPASS_E_V(1) | SSCG_EN(1) | AFC_ENB_E_V(1) |DCC_ENB_E_V(1) ; set = BYPASS_E_V(1) | SSCG_EN(1) | AFC_ENB_E_V(1) |DCC_ENB_E_V(1) ; clrsetbits_le32(&clk->epll_con2, clr, set); /*EPLL_CON1*/ clr = K(65535) | MFR(255) | MRR(31) | SEL_PF(3); set = K(0) | MFR(1) | MRR(6) | SEL_PF(3); clrsetbits_le32(&clk->epll_con1, clr, set); /*EPLL_CON0*/ set = SDIV(3) | PDIV(2) | MDIV(64) | PLL_ENABLE(1); clrsetbits_le32(&clk->epll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */ while (!(readl(&clk->epll_con0) & PLL_LOCKED_BIT)) continue; /**************** Set VPLL to 108MHz ****************/ /*VPLL_CON2*/ clr = BYPASS_E_V(1) | SSCG_EN(1) | AFC_ENB_E_V(1) |DCC_ENB_E_V(1) ; set = BYPASS_E_V(1) | SSCG_EN(1) | AFC_ENB_E_V(1) |DCC_ENB_E_V(1) ; clrsetbits_le32(&clk->vpll_con2, clr, set); /*VPLL_CON1*/ clr = K(65535) | MFR(255) | MRR(31) | SEL_PF(3); set = K(0) | MFR(1) | MRR(6) | SEL_PF(3); clrsetbits_le32(&clk->vpll_con1, clr, set); /*VPLL_CON0*/ set = SDIV(3) | PDIV(2) | MDIV(72) | PLL_ENABLE(1); clrsetbits_le32(&clk->vpll_con0, clr_pll_con0, set); /* Wait for PLL to be locked */ while (!(readl(&clk->vpll_con0) & PLL_LOCKED_BIT)) continue; /* * Step 4: Select the PLL(APLL, MPLL, EPLL, VPLL ...) output clock */ /*************** Set CMU_UART0-4 clocks src MUX ***************/ /* CLK_SRC_PERIL0 */ clr = UART0_SEL(15) | UART1_SEL(15) | UART2_SEL(15) | UART3_SEL(15) | UART4_SEL(15); /* * Set CLK_SRC_PERIL0 clocks src to MPLL * src values: 0(XXTI); 1(XusbXTI); 2(SCLK_HDMI24M); 3(SCLK_USBPHY0); * 5(SCLK_HDMIPHY); 6(SCLK_MPLL_USER_T); 7(SCLK_EPLL); * 8(SCLK_VPLL) * * Set all to SCLK_MPLL_USER_T */ set = UART0_SEL(6) | UART1_SEL(6) | UART2_SEL(6) | UART3_SEL(6) | UART4_SEL(6); clrsetbits_le32(&clk->src_peril0, clr, set); /*************** Set CMU_LEFTBUS clocks src MUX ***************/ /* CLK_SRC_LEFTBUS */ clr = MUX_GDL_SEL(1) | MUX_MPLL_USER_SEL_L(1); set = MUX_GDL_SEL(0) | MUX_MPLL_USER_SEL_L(1); clrsetbits_le32(&clk->src_leftbus, clr, set); /* Wait for mux change */ sdelay(0x30000); /*************** Set CMU_RIGHTBUS clocks src MUX ***************/ /* CLK_SRC_RIGHTBUS */ clr = MUX_MPLL_USER_SEL_R(1) | MUX_GDR_SEL(1); set = MUX_MPLL_USER_SEL_R(1) | MUX_GDR_SEL(0); clrsetbits_le32(&clk->src_rightbus, clr, set); /* Wait for mux change */ sdelay(0x30000); /*************** Set CMU_TOP clocks src MUX ***************/ /* CLK_SRC_TOP0 */ clr = MUX_EPLL_SEL(1) | MUX_VPLL_SEL(1) | MUX_ACLK_200_SEL(1) | MUX_ACLK_100_SEL(1) | MUX_ACLK_160_SEL(1) | MUX_ACLK_133_SEL(1) | MUX_ONENAND_SEL(1) | MUX_ONENAND_1_SEL(1); set = MUX_EPLL_SEL(1) | MUX_VPLL_SEL(1) | MUX_ACLK_200_SEL(0) | MUX_ACLK_100_SEL(0) | MUX_ACLK_160_SEL(0) | MUX_ACLK_133_SEL(0) | MUX_ONENAND_SEL(0) | MUX_ONENAND_1_SEL(0); clrsetbits_le32(&clk->src_top0, clr, set); /* Wait for mux change */ sdelay(0x30000); /* CLK_SRC_TOP1 */ clr = MUX_MPLL_USER_SEL_T(1) | MUX_ACLK_400_MCUISP_SEL(1) | MUX_ACLK_400_MCUISP_SUB_SEL(1) | MUX_ACLK_200_SUB_SEL(1) | MUX_ACLK_266_GPS_SEL(1) | MUX_ACLK_266_GPS_SUB_SEL(1); set = MUX_MPLL_USER_SEL_T(1) | MUX_ACLK_400_MCUISP_SEL(0) | MUX_ACLK_400_MCUISP_SUB_SEL(1) | MUX_ACLK_200_SUB_SEL(1) | MUX_ACLK_266_GPS_SEL(0) | MUX_ACLK_266_GPS_SUB_SEL(1); clrsetbits_le32(&clk->src_top1, clr, set); /* Wait for mux change */ sdelay(0x30000); /*************** Set CMU_DMC clocks src MUX ***************/ /* * Set CMU_DMC clocks src to MPLL * Bit values: 0 ; 1 * MUX_C2C_SEL: SCLKMPLL ; SCLKAPLL * MUX_DMC_BUS_SEL: SCLKMPLL ; SCLKAPLL * MUX_DPHY_SEL: SCLKMPLL ; SCLKAPLL * MUX_MPLL_SEL: FINPLL ; MOUT_MPLL_FOUT * MUX_PWI_SEL: 0110 (MPLL); 0111 (EPLL); 1000 (VPLL); 0(XXTI) * MUX_G2D_ACP0_SEL: SCLKMPLL ; SCLKAPLL * MUX_G2D_ACP1_SEL: SCLKEPLL ; SCLKVPLL * MUX_G2D_ACP_SEL: OUT_ACP0 ; OUT_ACP1 */ clr_src_dmc = MUX_C2C_SEL(1) | MUX_DMC_BUS_SEL(1) | MUX_DPHY_SEL(1) | MUX_MPLL_SEL(1) | MUX_PWI_SEL(15) | MUX_G2D_ACP0_SEL(1) | MUX_G2D_ACP1_SEL(1) | MUX_G2D_ACP_SEL(1); set = MUX_MPLL_SEL(1) | MUX_C2C_SEL(0) | MUX_DMC_BUS_SEL(0) | MUX_DPHY_SEL(0) | MUX_PWI_SEL(6) | MUX_G2D_ACP0_SEL(0) | MUX_G2D_ACP1_SEL(0) | MUX_G2D_ACP_SEL(0); clrsetbits_le32(&clk->src_dmc, clr_src_dmc, set); /* Wait for mux change */ while (readl(&clk->mux_stat_dmc) & MUX_STAT_DMC_CHANGING) continue; /*************** Set CMU_CPU clocks src MUX ***************/ /* Set CMU_CPU clocks src to APLL * Bit values: 0 ; 1 * MUX_APLL_SEL: FIN_PLL ; FOUT_APLL * MUX_CORE_SEL: MOUT_APLL ; SCLK_MPLL * MUX_HPM_SEL: MOUT_APLL ; SCLK_MPLL_USER_C * MUX_MPLL_USER_SEL_C: FIN_PLL ; SCLK_MPLL */ clr_src_cpu = MUX_APLL_SEL(1) | MUX_CORE_SEL(1) | MUX_HPM_SEL(1) | MUX_MPLL_USER_SEL_C(1); set = MUX_APLL_SEL(1) | MUX_CORE_SEL(0) | MUX_HPM_SEL(0) | MUX_MPLL_USER_SEL_C(1); clrsetbits_le32(&clk->src_cpu, clr_src_cpu, set); /* Wait for mux change */ while (readl(&clk->mux_stat_cpu) & MUX_STAT_CPU_CHANGING) continue; }
/* * Copyright (C) 2014 Samsung Electronics * Przemyslaw Marczak <[email protected]> * * SPDX-License-Identifier: GPL-2.0 */ #ifndef __EXYNOS4412_SETUP__ #define __EXYNOS4412_SETUP__ /* A/M/E/V PLL_CON0 */ #define SDIV(x) ((x) & 0x7) #define PDIV(x) (((x) & 0x3f) << 8) #define MDIV(x) (((x) & 0x3ff) << 16) #define FSEL(x) (((x) & 0x1) << 27) #define PLL_LOCKED_BIT (0x1 << 29) #define PLL_ENABLE(x) (((x) & 0x1) << 31) /* A/M PLL_CON1 */ #define AFC(x) ((x) & 0xf) #define LOCK_CON_DLY(x) (((x) & 0xf) << 8) #define LOCK_CON_IN(x) (((x) & 0x3) << 12) #define LOCK_CON_OUT(x) (((x) & 0x3) << 14) #define FEED_EN(x) (((x) & 0x1) << 16) #define AFC_ENB(x) (((x) & 0x1) << 20) #define DCC_ENB(x) (((x) & 0x1) << 21) #define BYPASS(x) (((x) & 0x1) << 22) #define RESV0(x) (((x) & 0x1) << 23) #define RESV1(x) (((x) & 0x1) << 24) /* E/V PLL_CON1 */ #define K(x) ((x) & 0xffff) #define MFR(x) (((x) & 0xff) << 16) #define MRR(x) (((x) & 0x1f) << 24) #define SEL_PF(x) (((x) & 0x3) << 9) /* E/V PLL_CON2 */ #define ICP_BOOST(x) ((x) & 0x3) #define FSEL_E_V(x) (((x) & 0x1) << 2) #define FVCO_EN(x) (((x) & 0x1) << 3) #define BYPASS_E_V(x) (((x) & 0x1) << 4) #define SSCG_EN(x) (((x) & 0x1) << 5) #define AFC_ENB_E_V(x) (((x) & 0x1) << 6) #define DCC_ENB_E_V(x) (((x) & 0x1) << 7) #define EXTAFC(x) (((x) & 0x1f) << 8) #define PLL_LOCKTIME(x) ((x) & 0xffff) /* CLK_SRC_CPU */ #define MUX_APLL_SEL(x) ((x) & 0x1) #define MUX_CORE_SEL(x) (((x) & 0x1) << 16) #define MUX_HPM_SEL(x) (((x) & 0x1) << 20) #define MUX_MPLL_USER_SEL_C(x) (((x) & 0x1) << 24) #define MUX_STAT_CHANGING 0x100 /* CLK_MUX_STAT_CPU */ #define APLL_SEL(x) ((x) & 0x7) #define CORE_SEL(x) (((x) & 0x7) << 16) #define HPM_SEL(x) (((x) & 0x7) << 20) #define MPLL_USER_SEL_C(x) (((x) & 0x7) << 24) #define MUX_STAT_CPU_CHANGING (APLL_SEL(MUX_STAT_CHANGING) | CORE_SEL(MUX_STAT_CHANGING) | HPM_SEL(MUX_STAT_CHANGING) | MPLL_USER_SEL_C(MUX_STAT_CHANGING)) /* CLK_DIV_CPU0 */ #define CORE_RATIO(x) ((x) & 0x7) #define COREM0_RATIO(x) (((x) & 0x7) << 4) #define COREM1_RATIO(x) (((x) & 0x7) << 8) #define PERIPH_RATIO(x) (((x) & 0x7) << 12) #define ATB_RATIO(x) (((x) & 0x7) << 16) #define PCLK_DBG_RATIO(x) (((x) & 0x7) << 20) #define APLL_RATIO(x) (((x) & 0x7) << 24) #define CORE2_RATIO(x) (((x) & 0x7) << 28) /* CLK_DIV_STAT_CPU0 */ #define DIV_CORE(x) ((x) & 0x1) #define DIV_COREM0(x) (((x) & 0x1) << 4) #define DIV_COREM1(x) (((x) & 0x1) << 8) #define DIV_PERIPH(x) (((x) & 0x1) << 12) #define DIV_ATB(x) (((x) & 0x1) << 16) #define DIV_PCLK_DBG(x) (((x) & 0x1) << 20) #define DIV_APLL(x) (((x) & 0x1) << 24) #define DIV_CORE2(x) (((x) & 0x1) << 28) #define DIV_STAT_CHANGING 0x1 #define DIV_STAT_CPU0_CHANGING (DIV_CORE(DIV_STAT_CHANGING) | DIV_COREM0(DIV_STAT_CHANGING) | DIV_COREM1(DIV_STAT_CHANGING) | DIV_PERIPH(DIV_STAT_CHANGING) | DIV_ATB(DIV_STAT_CHANGING) | DIV_PCLK_DBG(DIV_STAT_CHANGING) | DIV_APLL(DIV_STAT_CHANGING) | DIV_CORE2(DIV_STAT_CHANGING)) /* CLK_DIV_CPU1 */ #define COPY_RATIO(x) ((x) & 0x7) #define HPM_RATIO(x) (((x) & 0x7) << 4) #define CORES_RATIO(x) (((x) & 0x7) << 8) /* CLK_DIV_STAT_CPU1 */ #define DIV_COPY(x) ((x) & 0x7) #define DIV_HPM(x) (((x) & 0x1) << 4) #define DIV_CORES(x) (((x) & 0x1) << 8) #define DIV_STAT_CPU1_CHANGING (DIV_COPY(DIV_STAT_CHANGING) | DIV_HPM(DIV_STAT_CHANGING) | DIV_CORES(DIV_STAT_CHANGING)) /* CLK_SRC_DMC */ #define MUX_C2C_SEL(x) ((x) & 0x1) #define MUX_DMC_BUS_SEL(x) (((x) & 0x1) << 4) #define MUX_DPHY_SEL(x) (((x) & 0x1) << 8) #define MUX_MPLL_SEL(x) (((x) & 0x1) << 12) #define MUX_PWI_SEL(x) (((x) & 0xf) << 16) #define MUX_G2D_ACP0_SEL(x) (((x) & 0x1) << 20) #define MUX_G2D_ACP1_SEL(x) (((x) & 0x1) << 24) #define MUX_G2D_ACP_SEL(x) (((x) & 0x1) << 28) /* CLK_MUX_STAT_DMC */ #define C2C_SEL(x) (((x)) & 0x7) #define DMC_BUS_SEL(x) (((x) & 0x7) << 4) #define DPHY_SEL(x) (((x) & 0x7) << 8) #define MPLL_SEL(x) (((x) & 0x7) << 12) /* #define PWI_SEL(x) (((x) & 0xf) << 16) - Reserved */ #define G2D_ACP0_SEL(x) (((x) & 0x7) << 20) #define G2D_ACP1_SEL(x) (((x) & 0x7) << 24) #define G2D_ACP_SEL(x) (((x) & 0x7) << 28) #define MUX_STAT_DMC_CHANGING (C2C_SEL(MUX_STAT_CHANGING) | DMC_BUS_SEL(MUX_STAT_CHANGING) | DPHY_SEL(MUX_STAT_CHANGING) | MPLL_SEL(MUX_STAT_CHANGING) | G2D_ACP0_SEL(MUX_STAT_CHANGING) | G2D_ACP1_SEL(MUX_STAT_CHANGING) | G2D_ACP_SEL(MUX_STAT_CHANGING)) /* CLK_DIV_DMC0 */ #define ACP_RATIO(x) ((x) & 0x7) #define ACP_PCLK_RATIO(x) (((x) & 0x7) << 4) #define DPHY_RATIO(x) (((x) & 0x7) << 8) #define DMC_RATIO(x) (((x) & 0x7) << 12) #define DMCD_RATIO(x) (((x) & 0x7) << 16) #define DMCP_RATIO(x) (((x) & 0x7) << 20) /* CLK_DIV_STAT_DMC0 */ #define DIV_ACP(x) ((x) & 0x1) #define DIV_ACP_PCLK(x) (((x) & 0x1) << 4) #define DIV_DPHY(x) (((x) & 0x1) << 8) #define DIV_DMC(x) (((x) & 0x1) << 12) #define DIV_DMCD(x) (((x) & 0x1) << 16) #define DIV_DMCP(x) (((x) & 0x1) << 20) #define DIV_STAT_DMC0_CHANGING (DIV_ACP(DIV_STAT_CHANGING) | DIV_ACP_PCLK(DIV_STAT_CHANGING) | DIV_DPHY(DIV_STAT_CHANGING) | DIV_DMC(DIV_STAT_CHANGING) | DIV_DMCD(DIV_STAT_CHANGING) | DIV_DMCP(DIV_STAT_CHANGING)) /* CLK_DIV_DMC1 */ #define G2D_ACP_RATIO(x) ((x) & 0xf) #define C2C_RATIO(x) (((x) & 0x7) << 4) #define PWI_RATIO(x) (((x) & 0xf) << 8) #define C2C_ACLK_RATIO(x) (((x) & 0x7) << 12) #define DVSEM_RATIO(x) (((x) & 0x7f) << 16) #define DPM_RATIO(x) (((x) & 0x7f) << 24) /* CLK_DIV_STAT_DMC1 */ #define DIV_G2D_ACP(x) ((x) & 0x1) #define DIV_C2C(x) (((x) & 0x1) << 4) #define DIV_PWI(x) (((x) & 0x1) << 8) #define DIV_C2C_ACLK(x) (((x) & 0x1) << 12) #define DIV_DVSEM(x) (((x) & 0x1) << 16) #define DIV_DPM(x) (((x) & 0x1) << 24) #define DIV_STAT_DMC1_CHANGING (DIV_G2D_ACP(DIV_STAT_CHANGING) | DIV_C2C(DIV_STAT_CHANGING) | DIV_PWI(DIV_STAT_CHANGING) | DIV_C2C_ACLK(DIV_STAT_CHANGING) | DIV_DVSEM(DIV_STAT_CHANGING) | DIV_DPM(DIV_STAT_CHANGING)) /* CLK_DIV_TOP */ #define ACLK_400_MCUISP_RATIO(x) (((x) & 0x7) << 24) #define ACLK_266_GPS_RATIO(x) (((x) & 0x7) << 20) #define ONENAND_RATIO(x) (((x) & 0x7) << 16) #define ACLK_133_RATIO(x) (((x) & 0x7) << 12) #define ACLK_160_RATIO(x) (((x) & 0x7) << 8) #define ACLK_100_RATIO(x) (((x) & 0xf) << 4) #define ACLK_200_RATIO(x) ((x) & 0x7) #define DIV_STAT_TOP_CHANGING (ACLK_400_MCUISP_RATIO(DIV_STAT_CHANGING) | ACLK_266_GPS_RATIO(DIV_STAT_CHANGING) | ONENAND_RATIO(DIV_STAT_CHANGING) | ACLK_133_RATIO(DIV_STAT_CHANGING) | ACLK_160_RATIO(DIV_STAT_CHANGING) | ACLK_100_RATIO(DIV_STAT_CHANGING) | ACLK_200_RATIO(DIV_STAT_CHANGING)) /* CLK_SRC_TOP0 */ #define MUX_ONENAND_SEL(x) (((x) & 0x1) << 28) #define MUX_ACLK_133_SEL(x) (((x) & 0x1) << 24) #define MUX_ACLK_160_SEL(x) (((x) & 0x1) << 20) #define MUX_ACLK_100_SEL(x) (((x) & 0x1) << 16) #define MUX_ACLK_200_SEL(x) (((x) & 0x1) << 12) #define MUX_VPLL_SEL(x) (((x) & 0x1) << 8) #define MUX_EPLL_SEL(x) (((x) & 0x1) << 4) #define MUX_ONENAND_1_SEL(x) ((x) & 0x1) /* CLK_MUX_STAT_TOP */ #define ONENAND_SEL(x) (((x) & 0x3) << 28) #define ACLK_133_SEL(x) (((x) & 0x3) << 24) #define ACLK_160_SEL(x) (((x) & 0x3) << 20) #define ACLK_100_SEL(x) (((x) & 0x3) << 16) #define ACLK_200_SEL(x) (((x) & 0x3) << 12) #define VPLL_SEL(x) (((x) & 0x3) << 8) #define EPLL_SEL(x) (((x) & 0x3) << 4) #define ONENAND_1_SEL(x) ((x) & 0x3) /* CLK_SRC_TOP1 */ #define MUX_ACLK_400_MCUISP_SUB_SEL(x) (((x) & 0x1) << 24) #define MUX_ACLK_200_SUB_SEL(x) (((x) & 0x1) << 20) #define MUX_ACLK_266_GPS_SUB_SEL(x) (((x) & 0x1) << 16) #define MUX_MPLL_USER_SEL_T(x) (((x) & 0x1) << 12) #define MUX_ACLK_400_MCUISP_SEL(x) (((x) & 0x1) << 8) #define MUX_ACLK_266_GPS_SEL(x) (((x) & 0x1) << 4) /* CLK_MUX_STAT_TOP1 */ #define ACLK_400_MCUISP_SUB_SEL(x) (((x) & 0x3) << 24) #define ACLK_200_SUB_SEL(x) (((x) & 0x3) << 20) #define ACLK_266_GPS_SUB_SEL(x) (((x) & 0x3) << 16) #define MPLL_USER_SEL_T(x) (((x) & 0x3) << 12) #define ACLK_400_MCUISP_SEL(x) (((x) & 0x3) << 8) #define ACLK_266_GPS_SEL(x) (((x) & 0x3) << 4) /*CLK_DIV_LEFTBUS*/ #define GDL_RATIO(x) ((x) & 0x7) #define GPL_RATIO(x) (((x) & 0x7) << 4) #define DIV_STAT_LEFTBUS_CHANGING (GDL_RATIO(DIV_STAT_CHANGING) | GPL_RATIO(DIV_STAT_CHANGING) ) /* CLK_SRC_LEFTBUS */ #define MUX_MPLL_USER_SEL_L(x) (((x) & 0x1) << 4) #define MUX_GDL_SEL(x) ((x) & 0x1) /* CLK_MUX_STAT_LEFTBUS */ #define MPLL_USER_SEL_L(x) (((x) & 0x3) << 4) #define GDL_SEL(x) ((x) & 0x3) /*CLK_DIV_RIGHTBUS*/ #define GDR_RATIO(x) ((x) & 0x7) #define GPR_RATIO(x) (((x) & 0x7) << 4) #define DIV_STAT_RIGHTBUS_CHANGING (GDR_RATIO(DIV_STAT_CHANGING) | GPR_RATIO(DIV_STAT_CHANGING) ) /* CLK_SRC_RIGHTBUS */ #define MUX_MPLL_USER_SEL_R(x) (((x) & 0x1) << 4) #define MUX_GDR_SEL(x) ((x) & 0x1) /* CLK_MUX_STAT_RIGHTBUS */ #define MPLL_USER_SEL_R(x) (((x) & 0x3) << 4) #define GDR_SEL(x) ((x) & 0x3) /* Set CLK_SRC_PERIL0 */ #define UART4_SEL(x) (((x) & 0xf) << 16) #define UART3_SEL(x) (((x) & 0xf) << 12) #define UART2_SEL(x) (((x) & 0xf) << 8) #define UART1_SEL(x) (((x) & 0xf) << 4) #define UART0_SEL(x) ((x) & 0xf) /* Set CLK_DIV_PERIL0 */ #define UART4_RATIO(x) (((x) & 0xf) << 16) #define UART3_RATIO(x) (((x) & 0xf) << 12) #define UART2_RATIO(x) (((x) & 0xf) << 8) #define UART1_RATIO(x) (((x) & 0xf) << 4) #define UART0_RATIO(x) ((x) & 0xf) /* Set CLK_DIV_STAT_PERIL0 */ #define DIV_UART4(x) (((x) & 0x1) << 16) #define DIV_UART3(x) (((x) & 0x1) << 12) #define DIV_UART2(x) (((x) & 0x1) << 8) #define DIV_UART1(x) (((x) & 0x1) << 4) #define DIV_UART0(x) ((x) & 0x1) #define DIV_STAT_PERIL0_CHANGING (DIV_UART4(DIV_STAT_CHANGING) | DIV_UART3(DIV_STAT_CHANGING) | DIV_UART2(DIV_STAT_CHANGING) | DIV_UART1(DIV_STAT_CHANGING) | DIV_UART0(DIV_STAT_CHANGING)) /* CLK_DIV_FSYS1 */ #define MMC0_RATIO(x) ((x) & 0xf) #define MMC0_PRE_RATIO(x) (((x) & 0xff) << 8) #define MMC1_RATIO(x) (((x) & 0xf) << 16) #define MMC1_PRE_RATIO(x) (((x) & 0xff) << 24) /* CLK_DIV_STAT_FSYS1 */ #define DIV_MMC0(x) ((x) & 1) #define DIV_MMC0_PRE(x) (((x) & 1) << 8) #define DIV_MMC1(x) (((x) & 1) << 16) #define DIV_MMC1_PRE(x) (((x) & 1) << 24) #define DIV_STAT_FSYS1_CHANGING (DIV_MMC0(DIV_STAT_CHANGING) | DIV_MMC0_PRE(DIV_STAT_CHANGING) | DIV_MMC1(DIV_STAT_CHANGING) | DIV_MMC1_PRE(DIV_STAT_CHANGING)) /* CLK_DIV_FSYS2 */ #define MMC2_RATIO(x) ((x) & 0xf) #define MMC2_PRE_RATIO(x) (((x) & 0xff) << 8) #define MMC3_RATIO(x) (((x) & 0xf) << 16) #define MMC3_PRE_RATIO(x) (((x) & 0xff) << 24) /* CLK_DIV_STAT_FSYS2 */ #define DIV_MMC2(x) ((x) & 0x1) #define DIV_MMC2_PRE(x) (((x) & 0x1) << 8) #define DIV_MMC3(x) (((x) & 0x1) << 16) #define DIV_MMC3_PRE(x) (((x) & 0x1) << 24) #define DIV_STAT_FSYS2_CHANGING (DIV_MMC2(DIV_STAT_CHANGING) | DIV_MMC2_PRE(DIV_STAT_CHANGING) | DIV_MMC3(DIV_STAT_CHANGING) | DIV_MMC3_PRE(DIV_STAT_CHANGING)) /* CLK_DIV_FSYS3 */ #define MMC4_RATIO(x) ((x) & 0x7) #define MMC4_PRE_RATIO(x) (((x) & 0xff) << 8) /* CLK_DIV_STAT_FSYS3 */ #define DIV_MMC4(x) ((x) & 0x1) #define DIV_MMC4_PRE(x) (((x) & 0x1) << 8) #define DIV_STAT_FSYS3_CHANGING (DIV_MMC4(DIV_STAT_CHANGING) | DIV_MMC4_PRE(DIV_STAT_CHANGING)) #endif /*__EXYNOS4412_SETUP__ */
这块非常重要,配置不好会涉及到后面驱动移植。还需多注意。
以上是关于tiny4412 --Uboot移植 时钟的主要内容,如果未能解决你的问题,请参考以下文章