用Pytorch训练分类模型

Posted martinlwx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了用Pytorch训练分类模型相关的知识,希望对你有一定的参考价值。

本次分类问题使用的数据集是MNIST,每个图像的大小为(28*28)

编写代码的步骤如下

  1. 载入数据集,分别为训练集和测试集
  2. 让数据集可以迭代
  3. 定义模型,定义损失函数,训练模型
代码
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as dsets
from torch.autograd import Variable

'''下载训练集和测试集'''
train_dataset = dsets.MNIST(root='./datasets',
                            train=True, 
                            transform=transforms.ToTensor(),
                            download=True)

test_dataset = dsets.MNIST(root='./datasets',
                           train=False, 
                           transform=transforms.ToTensor())


'''让数据集可以迭代'''
batch_size = 100
n_iters = 3000
num_epochs = n_iters / (len(train_dataset) / batch_size)
num_epochs = int(num_epochs)

train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

'''定义模型'''
class LogisticRegressionModel(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(LogisticRegressionModel, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)
    
    def forward(self, x):
        out = self.linear(x)
        return out

'''实例化模型'''
input_dim = 28*28
output_dim = 10

model = LogisticRegressionModel(input_dim, output_dim)

'''定义损失计算方式'''
criterion = nn.CrossEntropyLoss()


learning_rate = 0.001

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

'''训练次数'''
iter = 0
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):

        images = Variable(images.view(-1, 28*28))
        labels = Variable(labels)
        
        #梯度置零
        optimizer.zero_grad()
        
        #计算输出
        outputs = model(images)
        
        #计算损失,内部会自动softmax然后进行Crossentropy
        loss = criterion(outputs, labels)
        
        #反向传播
        loss.backward()
        
        #更新参数
        optimizer.step()
        
        iter += 1
        
        if iter % 500 == 0:
            #计算准确度
            correct = 0
            total = 0
            for images, labels in test_loader:
                images = Variable(images.view(-1, 28*28))
                
                #获得输出,输出的大小为(batch_size,10)
                outputs = model(images)
                
                #获得预测值,输出的大小为(batch_size,1)
                _, predicted = torch.max(outputs.data, 1)
                
                #labels的size是(100,)
                total += labels.size(0)

                #返回的是预测值和标签值相等的个数
                correct += (predicted == labels).sum()
            
            accuracy = 100 * correct / total
            
            # Print Loss
            print('Iteration: {}. Loss: {}. Accuracy: {}'.format(iter, loss.data[0], accuracy))
输出如下

技术图片

以上是关于用Pytorch训练分类模型的主要内容,如果未能解决你的问题,请参考以下文章

垃圾分类数据集+垃圾分类识别训练代码(Pytorch)

动物数据集+动物分类识别训练代码(Pytorch)

动物数据集+动物分类识别训练代码(Pytorch)

PyTorch从头搭建并训练一个神经网络模型(图像分类CNN)

PyTorch从头搭建并训练一个神经网络模型(图像分类CNN)

Pytorch TextCNN实现中文文本分类(附完整训练代码)