吴恩达机器学习11:线性回归和多变量

Posted bigdata-stone

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了吴恩达机器学习11:线性回归和多变量相关的知识,希望对你有一定的参考价值。

 1.前面的线性回归只有一个单一特征量,即房屋的面积大小x,我们希望用这个特征量来预测y值,即房屋的价格,技术分享图片就是我们的假设函数。但是当我们有多个变量来来作为预测房屋的价格的一个特征或者一个变量,我们不仅知道了房屋的大小,还知道卧室的个数,楼层的数量以及房子的年龄,这就给了我们更多用来预测价格的信息。

 

  技术分享图片

   (1)我们在开始的时候提到过,要用这些变量,我们可以使用x1,x2,x3,x4等等来表示这四个特征,仍然用y来表示我们要预测的价格。

  (2)n:表示特征量的数目技术分享图片;x(i):表示第i个训练样本的输入特征值,技术分享图片比如x1表示第一个训练样本的特征向量,技术分享图片,x1是我们用来预测第一个房子价格特征向量。

xij表示在第i个样本中的第j个特征向量的值技术分享图片。比如:x(2)3表示第二个向量里第三个特征向量

技术分享图片

 2. 多个特征向量的特征表示式技术分享图片

  将所有的n个特征向量相加,比如一个房子的特征假设式为:技术分享图片

  经过重写改写过的假设形式如下:技术分享图片

  所以现在的特征向量x是一个从0开始标记的n+1维的向量

  技术分享图片

  与此同时,我们将所有的参数都看做一个向量,也即将所有参数看成一个向量

   技术分享图片

  对于这个式子技术分享图片

  可以写成θ转置乘以X的形式,即技术分享图片

  以上就是所谓的多元线性回归

 

以上是关于吴恩达机器学习11:线性回归和多变量的主要内容,如果未能解决你的问题,请参考以下文章

吴恩达《机器学习》课程总结单变量线性回归

机器学习|多变量线性回归 | 吴恩达学习笔记

吴恩达机器学习学习笔记——2.1单变量线性回归算法

吴恩达机器学习——线性回归

吴恩达《机器学习》课程总结多变量线性回归

吴恩达《机器学习》课程总结_多变量线性回归