高斯消元总结
Posted bcoier
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了高斯消元总结相关的知识,希望对你有一定的参考价值。
这里介绍的是高斯-约旦消元法。
相对于传统的高斯消元,约旦消元法的精度更好、代码更简单,没有回带的过程。
约旦消元法大致思路如下:
1.选择一个尚未被选过的未知数作为主元,选择一个包含这个主元的方程。
2.将这个方程主元的系数化为1。
3.通过加减消元,消掉其它方程中的这个未知数。
4.重复以上步骤,直到把所有式子变成形如:
a1+b0+c*0……=d
我们用矩阵表示每一项系数以及结果
代码如下:
#include<bits/stdc++.h>
#define re register
#define il inline
#define debug printf("Now is %d
",__LINE__);
using namespace std;
#define maxn 105
#define D double
D a[maxn][maxn];
int n;
int main()
{
scanf("%d",&n);
for(re int i=1;i<=n;++i)
{
for(re int j=1;j<=n+1;++j)
{
scanf("%lf",&a[i][j]);
}
}
for(re int i=1;i<=n;++i)//枚举列(项)
{
re int max=i;
for(re int j=i+1;j<=n;++j)//选出该列最大系数
{
if(fabs(a[j][i])>fabs(a[max][i]))
//fabs是取浮点数的绝对值的函数
{
max=j;
}
}
for(re int j=1;j<=n+1;++j)//交换
{
swap(a[i][j],a[max][j]);
}
if(!a[i][i])//最大值等于0则说明该列都为0,肯定无解
{
puts("No Solution");
return 0;
}
for(re int j=1;j<=n;++j)//每一项都减去一个数(就是小学加减消元)
{
if(j!=i)
{
re D temp=a[j][i]/a[i][i];
for(re int k=i+1;k<=n+1;++k)
{
a[j][k]-=a[i][k]*temp;
//a[j][k]-=a[j][i]*a[i][k]/a[i][i];
}
}
}
}
//上述操作结束后,矩阵会变成这样
/*
k1*a=e1
k2*b=e2
k3*c=e3
k4*d=e4
*/
//所以输出的结果要记得除以该项系数,消去常数
for(re int i=1;i<=n;++i)
{
printf("%.2lf
",a[i][n+1]/a[i][i]);
}
return 0;
}
以上是关于高斯消元总结的主要内容,如果未能解决你的问题,请参考以下文章