bzoj 2784 时间流逝 —— 树上高斯消元
Posted zinn
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 2784 时间流逝 —— 树上高斯消元相关的知识,希望对你有一定的参考价值。
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2784
其实转移是一棵树,从根到一个点表示一种能量圈状态,当能量值大于 T 是停止,也就是成为叶子;
点数大约是整数划分,据说是 1.2e6 左右,可以 dfs;
设 ( d[x] ) 是儿子数,则 ( f[x] = p*(f[fa]+1) + (1-p) frac{sumlimits_{v in son}(f[v]+1)}{d[x]} )
仍然设 ( f[x] = K[x] * f[fa] + B[x] ),得到 ( K[x] = frac{d[x]*p}{d[x]-(1-p) sum A[v] } , B[x] = frac{(1-p)sum B[v] + d[x]}{d[x]-(1-p) sum A[v]} )
走到叶子停止,而叶子的值本来就是 0,所以直接做即可;
注意根的 ( p ) 不同,直接在根处把 ( p ) 改成 0 即可。
代码如下:
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; typedef double db; int rd() { int ret=0,f=1; char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=0; ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘)ret=ret*10+ch-‘0‘,ch=getchar(); return f?ret:-ret; } int T,n,w[35]; db p; struct N{ db K,B; N(db k=0,db b=0):K(k),B(b) {} }; N dfs(int sum,int d) { if(sum>T)return N(0,0); db ks=0,bs=0,P=(sum==0?0:p); for(int i=1;i<=d;i++) { N tmp=dfs(sum+w[i],i); ks+=tmp.K; bs+=tmp.B; } return N(d*P/(d-(1-P)*ks),((1-P)*bs+d)/(d-(1-P)*ks)); } int main() { while(~scanf("%lf",&p)) { T=rd(); n=rd(); for(int i=1;i<=n;i++)w[i]=rd(); sort(w+1,w+n+1); printf("%.3f ",dfs(0,n).B); } return 0; }
以上是关于bzoj 2784 时间流逝 —— 树上高斯消元的主要内容,如果未能解决你的问题,请参考以下文章
bzoj 2784: [JLOI2012]时间流逝树形期望dp