大数据入门第十四天——Hbase详解hbase基本原理与MR操作Hbase

Posted jiangbei

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据入门第十四天——Hbase详解hbase基本原理与MR操作Hbase相关的知识,希望对你有一定的参考价值。

一、基本原理

  1.hbase的位置

  技术分享图片

  上图描述了Hadoop 2.0生态系统中的各层结构。其中HBase位于结构化存储层,HDFS为HBase提供了高可靠性的底层存储支持, MapReduce为HBase提供了高性能的批处理能力,Zookeeper为HBase提供了稳定服务和failover机制,Pig和Hive为HBase提供了进行数据统计处理的高层语言支持,Sqoop则为HBase提供了便捷的RDBMS数据导入功能,使业务数据从传统数据库向HBase迁移变的非常方便。

  2.体系图

  技术分享图片

 

   体系图中各个组件的含义,参考http://blog.csdn.net/carl810224/article/details/51970039/

                  https://www.cnblogs.com/qiaoyihang/p/6246424.html

  3.基本流程 

  1. 写流程

    1、 client向hregionserver发送写请求。

    2、 hregionserver将数据写到hlog(write ahead log)。为了数据的持久化和恢复。

    3、 hregionserver将数据写到内存(memstore)

    4、 反馈client写成功。

  2. 数据flush过程

    1、 当memstore数据达到阈值(老版本默认是64M),将数据刷到硬盘,将内存中的数据删除,同时删除Hlog中的历史数据。

    2、 并将数据存储到hdfs中。

    3、 在hlog中做标记点。

  3. 数据合并过程

    1、 当数据块达到4块,hmaster将数据块加载到本地,进行合并

    2、 当合并的数据超过256M,进行拆分,将拆分后的region分配给不同的hregionserver管理

    3、 当hregionser宕机后,将hregionserver上的hlog拆分,然后分配给不同的hregionserver加载,修改.META.

    4、 注意:hlog会同步到hdfs

  4. hbase的读流程

    1、 通过zookeeper和-ROOT- .META.表定位hregionserver。

    2、 数据从内存和硬盘合并后返回给client

    3、 数据块会缓存

二、MR操作

   1.实现方法 

    Hbase对MapReduce提供支持,它实现了TableMapper类和TableReducer类,我们只需要继承这两个类即可。

  2.准备相关表  

    1、建立数据来源表‘word’,包含一个列族‘content’

      向表中添加数据,在列族中放入列‘info’,并将短文数据放入该列中,如此插入多行,行键为不同的数据即可

    2、建立输出表‘stat’,包含一个列族‘content’

    3、通过Mr操作Hbase的‘word’表,对‘content:info’中的短文做词频统计,并将统计结果写入‘stat’表的‘content:info中’,行键为单词

  3.实现代码

package com.itcast.hbase;

import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
/**
 * mapreduce操作hbase
 * @author wilson
 *
 */
public class HBaseMr {
    /**
     * 创建hbase配置
     */
    static Configuration config = null;
    static {
        config = HBaseConfiguration.create();
        config.set("hbase.zookeeper.quorum", "slave1,slave2,slave3");
        config.set("hbase.zookeeper.property.clientPort", "2181");
    }
    /**
     * 表信息
     */
    public static final String tableName = "word";//表名1
    public static final String colf = "content";//列族
    public static final String col = "info";//
    public static final String tableName2 = "stat";//表名2
    /**
     * 初始化表结构,及其数据
     */
    public static void initTB() {
        HTable table=null;
        HBaseAdmin admin=null;
        try {
            admin = new HBaseAdmin(config);//创建表管理
            /*删除表*/
            if (admin.tableExists(tableName)||admin.tableExists(tableName2)) {
                System.out.println("table is already exists!");
                admin.disableTable(tableName);
                admin.deleteTable(tableName);
                admin.disableTable(tableName2);
                admin.deleteTable(tableName2);
            }
            /*创建表*/
                HTableDescriptor desc = new HTableDescriptor(tableName);
                HColumnDescriptor family = new HColumnDescriptor(colf);
                desc.addFamily(family);
                admin.createTable(desc);
                HTableDescriptor desc2 = new HTableDescriptor(tableName2);
                HColumnDescriptor family2 = new HColumnDescriptor(colf);
                desc2.addFamily(family2);
                admin.createTable(desc2);
            /*插入数据*/
                table = new HTable(config,tableName);
                table.setAutoFlush(false);
                table.setWriteBufferSize(5);
                List<Put> lp = new ArrayList<Put>();
                Put p1 = new Put(Bytes.toBytes("1"));
                p1.add(colf.getBytes(), col.getBytes(),    ("The Apache Hadoop software library is a framework").getBytes());
                lp.add(p1);
                Put p2 = new Put(Bytes.toBytes("2"));p2.add(colf.getBytes(),col.getBytes(),("The common utilities that support the other Hadoop modules").getBytes());
                lp.add(p2);
                Put p3 = new Put(Bytes.toBytes("3"));
                p3.add(colf.getBytes(), col.getBytes(),("Hadoop by reading the documentation").getBytes());
                lp.add(p3);
                Put p4 = new Put(Bytes.toBytes("4"));
                p4.add(colf.getBytes(), col.getBytes(),("Hadoop from the release page").getBytes());
                lp.add(p4);
                Put p5 = new Put(Bytes.toBytes("5"));
                p5.add(colf.getBytes(), col.getBytes(),("Hadoop on the mailing list").getBytes());
                lp.add(p5);
                table.put(lp);
                table.flushCommits();
                lp.clear();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                if(table!=null){
                    table.close();
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }
    /**
     * MyMapper 继承 TableMapper
     * TableMapper<Text,IntWritable> 
     * Text:输出的key类型,
     * IntWritable:输出的value类型
     */
    public static class MyMapper extends TableMapper<Text, IntWritable> {
        private static IntWritable one = new IntWritable(1);
        private static Text word = new Text();
        @Override
        //输入的类型为:key:rowKey; value:一行数据的结果集Result
        protected void map(ImmutableBytesWritable key, Result value,
                Context context) throws IOException, InterruptedException {
            //获取一行数据中的colf:col
            String words = Bytes.toString(value.getValue(Bytes.toBytes(colf), Bytes.toBytes(col)));// 表里面只有一个列族,所以我就直接获取每一行的值
            //按空格分割
            String itr[] = words.toString().split(" ");
            //循环输出word和1
            for (int i = 0; i < itr.length; i++) {
                word.set(itr[i]);
                context.write(word, one);
            }
        }
    }
    /**
     * MyReducer 继承 TableReducer
     * TableReducer<Text,IntWritable> 
     * Text:输入的key类型,
     * IntWritable:输入的value类型,
     * ImmutableBytesWritable:输出类型,表示rowkey的类型
     */
    public static class MyReducer extends
            TableReducer<Text, IntWritable, ImmutableBytesWritable> {
        @Override
        protected void reduce(Text key, Iterable<IntWritable> values,
                Context context) throws IOException, InterruptedException {
            //对mapper的数据求和
            int sum = 0;
            for (IntWritable val : values) {//叠加
                sum += val.get();
            }
            // 创建put,设置rowkey为单词
            Put put = new Put(Bytes.toBytes(key.toString()));
            // 封装数据
            put.add(Bytes.toBytes(colf), Bytes.toBytes(col),Bytes.toBytes(String.valueOf(sum)));
            //写到hbase,需要指定rowkey、put
            context.write(new ImmutableBytesWritable(Bytes.toBytes(key.toString())),put);
        }
    }
    
    public static void main(String[] args) throws IOException,
            ClassNotFoundException, InterruptedException {
        config.set("df.default.name", "hdfs://master:9000/");//设置hdfs的默认路径
        config.set("hadoop.job.ugi", "hadoop,hadoop");//用户名,组
        config.set("mapred.job.tracker", "master:9001");//设置jobtracker在哪
        //初始化表
        initTB();//初始化表
        //创建job
        Job job = new Job(config, "HBaseMr");//job
        job.setJarByClass(HBaseMr.class);//主类
        //创建scan
        Scan scan = new Scan();
        //可以指定查询某一列
        scan.addColumn(Bytes.toBytes(colf), Bytes.toBytes(col));
        //创建查询hbase的mapper,设置表名、scan、mapper类、mapper的输出key、mapper的输出value
        TableMapReduceUtil.initTableMapperJob(tableName, scan, MyMapper.class,Text.class, IntWritable.class, job);
        //创建写入hbase的reducer,指定表名、reducer类、job
        TableMapReduceUtil.initTableReducerJob(tableName2, MyReducer.class, job);
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

 

以上是关于大数据入门第十四天——Hbase详解hbase基本原理与MR操作Hbase的主要内容,如果未能解决你的问题,请参考以下文章

大数据入门第十五天——HBase整合:云笔记项目

大数据入门第十一天——hive详解基本操作

2021年大数据HBase(十四):HBase的原理及其相关的工作机制

2021年大数据HBase(十四):HBase的原理及其相关的工作机制

大数据入门第二十四天——SparkStreaming与flumekafka整合

大数据笔记(十四)——HBase的过滤器与Mapreduce