机器学习八大算法

Posted wxjqss

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习八大算法相关的知识,希望对你有一定的参考价值。

机器学习入门知识

机器学习是什么?

机器学习的定义有很多,我自己的理解是,机器学习是使机器拥有解决实际问题的能力,他能够根据经验数据分析现有的问题,进行分类和预测

有监督学习和无监督学习

面对要解决的问题首先分析是分类还是回归问题,再进一步看看是监督学习的方法好还是无监督学习的方法好,监督学习是事前就将结果进行了标记,在监视的情况下看运行的结果,类似于圈套,对结果是具体的,而无监督学习没有明确的结果

无监督学习是降维和聚类

有监督学习是线性回归(单变量、多变量),逻辑回归(LR),神经网络,支持向量机(svm),决策树

下面来一一介绍他们的核心和基本应用

从易到难,由浅入深

监督学习中有个基本的模型EPT三要素,其中E是经验,P是性能,T是任务

单变量线性回归:

他的核心思想是以预测值与真实值de误差平方和作为代价,再利用梯度下降的方法传递误测,更新参数

基本应用:

明确目标,分析问题,加载数据,数据处理(数据压缩,归一化),数据标准化,带入模型,进行训练,通过代价函数提高性能,通过梯度下降的方法找到参数的最优解,得到模型

用测试集进行测试,看看准确率,指导自己的模型,提高泛化能力

插入知识----机器学习设计

面对一些训练集和测试集还有交叉验证集,常常会出现过拟合,欠拟合的问题,针对这些问题怎样来进行调试

过拟合的产生原因是过于拟合训练集的数据,于至于模型不能泛化,可以通过以下途径来解决

1.是正则化,引入参数lamda,减小特征的权重,增加代价  

以上是关于机器学习八大算法的主要内容,如果未能解决你的问题,请参考以下文章

从模型到算法,用机器学习解决90%的自然语言处理

机器学习实战-----八大分类器识别树叶带源码

八大机器学习框架对比及Tensorflow的优势

机器学习实战-----八大分类器识别树叶带源码

机器学习3:SVM——软间隔&核函数(中)

机器学习资料《分布式机器学习算法理论与实践》+《白话机器学习算法》+《Python机器学习基础教程》