2个(隐藏层+池化层)+全链接层及保存暂停后可继续训练,64个输入,2个输出

Posted rongye

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2个(隐藏层+池化层)+全链接层及保存暂停后可继续训练,64个输入,2个输出相关的知识,希望对你有一定的参考价值。


#!/usr/bin/env python

import tensorflow as tf
input_num = 64
output_num = 2
def create_file(path,output_num):
#write = tf.python_io.TFRecordWriter(‘train.tfrecords‘)
with open(path,‘r‘) as file:
lines = file.readlines()
# print lines.__len__()
count = 0
data = []
featuresList = []
labelList = []
label = []
label3 = []
days = []
for line in lines:
word = line.split(" ")
features = []
#label3=[]
for i in range(2, len(word)):
if i < (len(word) - 1):
features.append(word[i].split(":")[1])
else:
features.append(word[len(word) - 1].split(":")[1].split(" ")[0])
label.append(int(word[1]))
days.append(str(word[0]))
count = count + 1
#print(count)
featuresList.append(features)
labelList.append(label)
for m in labelList[0]:
label2 = []
for k in range(output_num):
k+=1
#print(k,m)
if m == k:
label2.append(1)
else:
label2.append(0)
label3.append(label2)
data.append(featuresList)
data.append(label3)
data.append(days)
#write.close()
return data[0],data[1]

data = create_file("train03.txt",output_num)
#test = create_file("train04.txt",output_num)
d = tf.convert_to_tensor(data[0])#训练集
d1 = tf.convert_to_tensor(data[1])

# 初始化权值
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1) # 生成一个截断的正态分布
return tf.Variable(initial)


# 初始化偏置
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)


# 卷积层
def conv2d(x, W):
# x input tensor of shape `[batch, in_height, in_width, in_channels]`
# W filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels]
# `strides[0] = strides[3] = 1`. strides[1]代表x方向的步长,strides[2]代表y方向的步长
# padding: A `string` from: `"SAME", "VALID"`
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding=‘SAME‘)


# 池化层
def max_pool_2x2(x):
# ksize [1,x,y,1]
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding=‘SAME‘)
# 定义两个placeholder
x = tf.placeholder(tf.float32, [None, input_num])
y = tf.placeholder(tf.float32, [None, output_num])
# 改变x的格式转为4D的向量[batch, in_height, in_width, in_channels]`
x_image = tf.reshape(x, [-1, 8, 8, 1])
# 初始化第一个卷积层的权值和偏置
W_conv1 = weight_variable([2, 2, 1, 16]) # 2*2的采样窗口,16个卷积核从1个平面抽取特征
b_conv1 = bias_variable([16]) # 每一个卷积核一个偏置值
# 把x_image和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
conv2d_1 = conv2d(x_image, W_conv1) + b_conv1
h_conv1 = tf.nn.relu(conv2d_1)
h_pool1 = max_pool_2x2(h_conv1) # 进行max-pooling output size 4x4x16
# # 初始化第二个卷积层的权值和偏置
W_conv2 = weight_variable([2, 2, 16, 32]) # 5*5的采样窗口,32个卷积核从16个平面抽取特征
b_conv2 = bias_variable([32]) # 每一个卷积核一个偏置值
# # 把h_pool1和权值向量进行卷积,再加上偏置值,然后应用于relu激活函数
conv2d_2 = conv2d(h_pool1, W_conv2) + b_conv2
h_conv2 = tf.nn.relu(conv2d_2)
h_pool2 = max_pool_2x2(h_conv2) # 进行max-pooling
# 8*8的图片第一次卷积后还是8*8,第一次池化后变为4*4
# 第二次卷积后为4*4,第二次池化后变为了2*2
# 进过上面操作后得到32张2*2的平面
# 初始化第一个全连接层的权值
W_fc1 = weight_variable([2 * 2 * 32, 512]) # 上一场有2*2*32个神经元,全连接层有512个神经元
b_fc1 = bias_variable([512]) # 512个节点
# 把池化层2的输出扁平化为1维
h_pool2_flat = tf.reshape(h_pool2, [-1, 2 * 2 * 32])
# 求第一个全连接层的输出
wx_plus_b1 = tf.matmul(h_pool2_flat, W_fc1) + b_fc1
h_fc1 = tf.nn.relu(wx_plus_b1)
# keep_prob用来表示神经元的输出概率
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 初始化第二个全连接层
W_fc2 = weight_variable([512, output_num])
b_fc2 = bias_variable([output_num])
wx_plus_b2 = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# 计算输出
prediction = tf.nn.softmax(wx_plus_b2)
# 交叉熵代价函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction))
# 使用AdamOptimizer进行优化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 结果存放在一个布尔列表中
correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) # argmax返回一维张量中最大的值所在的位置
# 求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver(max_to_keep=4)
with tf.Session() as sess:
try :
saver.restore(sess, tf.train.latest_checkpoint("model/"))
except:
sess.run(tf.global_variables_initializer())
for epoch in range(100):
batch_xs = sess.run(d)
batch_ys = sess.run(d1)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 0.7})
if epoch % 1 ==0:
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.0})
print("Iter " + str(epoch) + ", Testing Accuracy= " + str(acc))
saver.save(sess, "model/my-model2", global_step=epoch)











































































































































以上是关于2个(隐藏层+池化层)+全链接层及保存暂停后可继续训练,64个输入,2个输出的主要内容,如果未能解决你的问题,请参考以下文章

caffe源码 池化层 反向传播

增加池化层后参数量

聊聊池化层和步长为2的卷积层

池化层或卷积层后的激活函数?

聊聊池化层和步长为2的卷积层

卷积层,池化层等,前向/反向传播原理讲解