朴素贝叶斯应用:垃圾邮件分类
Posted zhanyuki
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了朴素贝叶斯应用:垃圾邮件分类相关的知识,希望对你有一定的参考价值。
import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer #预处理 def preprocessing(text): tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] stops=stopwords.words(‘english‘) tokens=[token for token in tokens if token not in stops] tokens=[token.lower() for token in tokens if len(token)>=2] lmtzr=WordNetLemmatizer() tokens=[lmtzr.lemmatize(token) for token in tokens] preprocessed_text=‘ ‘.join(tokens) return preprocessed_text preprocessing((text)) #读取数据集 import csv file_path=r‘C:UserspcDesktopSMSSpamCollectionjsn.txt‘ sms=open(file_path,‘r‘,encoding=‘utf-8‘) sms_data=[] sms_label=[] csv_reader=csv.reader(sms,delimiter=‘ ‘) for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close(); print("邮件的总数:",len(sms_label)) sms_label #划分训练集和测试集 from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(sms_data,test_size=0.3,random_state=0,startify=sms_label) #将其向量化 from sklearn.feature_extraction.text import TfidfVectorizer vectorizer=TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words=‘english‘,strip_accents=‘unicode‘,norm=‘12‘) X_train=vectorizer.fit_transform(x_train) X_text=vectorizer.transform(x_test) X_train a=X_train.toarray() print(a) for i in range(1000): for j in range(5984): if a[i,j]!=0: print(i,j,a[i,j]) #朴素贝叶斯分类器 from sklearn.navie_bayes import MultinomialNB clf= MultinomialNB().fit(X_train,y_train) y_nb_pred=clf.predict(X_test) #分类结果显示 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report #x_test预测结果 print(y_nb_pred.shape,y_nb_pred) print(‘nb_confusion_matrix:‘) #混淆矩阵 cm=confusion_matrix(y_test,y_nb_pred) print(cm) print(‘nb_classification_report:‘) #分类指标文本报告 cr=classification_report(y_test,y_nb_pred#主要分类指标的文本报告 print(cr)
以上是关于朴素贝叶斯应用:垃圾邮件分类的主要内容,如果未能解决你的问题,请参考以下文章