pytorch全连接层计算时间短

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pytorch全连接层计算时间短相关的知识,希望对你有一定的参考价值。

1.读取数据
首先,引入必要的头文件,并从文件中读入数据:

import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import torch import torch.nn as nn from torch.autograd import Variable df = pd.read_csv('data/AirPassengers.csv') plt.plot(df['#Passengers']) plt.show()
程序输出如下图所示:

2.归一化
无论机器学习还是深度学习,使用哪一种框架,归一化都是必要环节。归一化的目标是将每一维特征压缩到一定范围之内,以免不同特征因取值范围不同而影响其权重。非常大或非常小的值搭配上不恰当的学习率,往往使得收敛过慢,或者因每次调整的波动太大最终无法收敛。归一化去除了这些不稳定因素。

归一化的具体做法是将某一列特征转换成均值为 0、标准差为1的数据,在图像处理过程中,也常把0-255之间的颜色值转换为0-1之间的小数。

本例中使用了均值和标准差编写了归一化和反归一化函数:

def feature_normalize(data): mu = np.mean(data,axis=0) # 均值 std = np.std(data,axis=0) # 标准差 return (data - mu)/std def feature_unnormalize(data, arr): mu = np.mean(data,axis=0) std = np.std(data,axis=0) return arr * std + mu
3.提取新特征
提取新特征是指从现有特征中提取更多可以代入模型的信息,从而生成新特征,本例中的数据包括两列,第一列“Month”是字符串类型的时间,第二列“#Passengers”是乘客量,也就是需要预测的数据y。下面通过拆分和类型转换,从第一列中提取具体的年“year”和月“mon”,将索引列变为特征“x”,并使用上面定义的函数实现归一化功能。

df['year'] = df['Month'].apply(lambda x: float(x[:4])) df['mon'] = df['Month'].apply(lambda x: float(x[5:])) df['x'] = feature_normalize(df.index) df['y'] = feature_normalize(df['#Passengers']) df['year'] = feature_normalize(df['year']) df['mon'] = feature_normalize(df['mon']) df['real'] = feature_unnormalize(df['#Passengers'], df['y'])
处理后的数据如下图所示:

4.处理缺失值和异常值
处理缺失值和异常值也是特征工程的重要环节,有时花费的时间比建模还多。处理缺失值的常用方法是删除重要特征缺失的item,或者用均值,前后值填充;处理异常值是监测数据中不正常的值,并做出相应处理,由于本例中数据比较“干净”,无需做缺失值和异常值处理。

5.向量化
向量化是将读出的数据转换成模型需要的数据格式,根据不同的模型做法不同,本例中的向量化将在后面的模型部分实现。

6.切分训练集和测试集
训练前还需要把数据切分成训练集和测试集,以避免过拟合,本例中将70%的数据用于训练,最终模型将对所有数据预测并做图。

TRAIN_PERCENT = 0.7 train_size = int(len(df) * TRAIN_PERCENT) train = df[:train_size]
拟合直线
拟合程序分成三部分:定义模型、优化器和误差函数;训练模型;预测并做图。

1.定义模型、优化器、误差函数
模型继承自mm.Module,并实现了两个核心函数,init用于初始化模型结构,forward用于定义前向传播的过程。本例中实现了最为简单的模型,其中只包含一个全连接层,使用nn.Linear定义,torch.nn中定义了常用的网络层实现。

class LinearRegression(nn.Module): def __init__(self): super(LinearRegression, self).__init__() self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1 def forward(self, x): x = self.linear(x) return x model = LinearRegression() criterion = nn.MSELoss() # 损失函数:均方误差 optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # 优化算法:随机梯度下降
损失函数使用了均方误差 MSELoss,它计算的是预测值与真值之差平方的期望值,MSELoss也是回归中最常用的损失函数,torch.nn中实现了一些常用的损失函数,可以直接使用,

优化的目标是更好地更新参数,使模型快速收敛。优化算法就是调整模型参数更新的策略,优化器是优化算法的具体实现。本例中优化器optimizer使用了最基础的随机梯度下降optim.SGD优化方法,torch.optim中定义了常用的优化器。在参数中设置了学习率为0.001,并将模型的参数句柄传入优化器,优化器后期将调整这些参数。

注意:学习率是一个重要参数,最好从小到大设置,如果设置太大,可能造成每次对参数修改过大,造成抖动,使得最终无法收敛。

2.训练模型
训练之前,先把数据转换成模型需要的数据格式,将pandas的数据格式转换为float32格式的Tensor张量,然后用unsqueeze扩展维度到2维(unsqueeze已在上一篇详细介绍)。

x = torch.unsqueeze(torch.tensor(np.array(train['x']), dtype=torch.float32), dim=1) y = torch.unsqueeze(torch.tensor(np.array(train['y']), dtype=torch.float32), dim=1) for e in range(10000): inputs = Variable(x) target = Variable(y) out = model(inputs) # 前向传播 loss = criterion(out, target) # 计算误差 optimizer.zero_grad() # 梯度清零 loss.backward() # 后向传播 optimizer.step() # 调整参数 if (e+1) % 1000 == 0: # 每1000次迭代打印一次误差值 print('Epoch:, Loss::.5f'.format(e+1, loss.item()))
后面的循环部分进行了10000次迭代,也就是说将所有数据放进模型训练了10000次,从而使模型收敛。每一次循环之中,将x,y分别转换成变量Variable格式。

然后进行前先传播,model(inputs)调用的是nn.Module 的call()函数(call是Python类中的一个特殊方法,如果类中定义了此方法,可以通过实例名加括号的方式调用该方法)父类的call()调用了前向函数forward()将数据传入层中处理。

接下来是误差函数和优化器配合调整模型参数,此处到底修改了哪些值,又是如何修改的,是最难理解的部分。先通过定义的误差函数计算误差,从loss值可以看到每一次迭代之后误差的情况。

下一步是优化器清零,调用优化器的zero_grad方法,清除了model.parameters中的梯度grad。

之后是反向传播,误差函数的backward,调用了torch.autograd.backward()函数,backward()是上面定义的forward()的反向过程,对每层每一个参数求导,并填充在model.parameters的grad中。

最后调用优化器的step方法(step的具体实现可参考torch源码中optim/sgd.py中的step函数),它使用model.parameters中的梯度grad和设置的学习率、动量等参数计算出model.parameters的新data值,形如:weight = weight - learning_rate * gradient。

可以说,最后几步都是针对model.parameters模型参数的修改。整个过程可以通过跟踪model.parameters的data和grad的内容变化来分析。方法如下:

for p in model.parameters(): print(p.data, p.grad)
也可以在程序中加入以下代码,用于跟踪后向传播的过程:

f = loss.grad_fn while True: print(f) if len(f.next_functions) == 0: break f = f.next_functions[0][0]
3.预测和做图
本例中用70%数据作为训练集,用所有数据作为测试集,因此,用全部数据重新计算了x,y值;使用eval函数将模型转换为测试模式(有一些层在训练模型和预测模型时有差别);将数据代入模型预测,并转换成numpy格式作图显示。

x = torch.unsqueeze(torch.tensor(np.array(df['x']), dtype=torch.float32), dim=1) y = torch.unsqueeze(torch.tensor(np.array(df['y']), dtype=torch.float32), dim=1) model.eval() #将模型变为测试模式 predict = model(Variable(x)) # 预测 predict = predict.data.numpy() # 转换成numpy格式 plt.plot(x.numpy(), y.numpy(), 'y') plt.plot(x.numpy(), predict) plt.show()
程序运行结果如下图所示,可以看到模型用一条直线拟合曲线,在前70%的训练数据中表现更好。

多特征拟合
直线拟合的原理是y=kx+b,求斜率k和截距b。其中的x是数据产生的时间,从数据表的索引号转换求得,y是乘客量。还可以使用另一些方法进一步拟合曲线。如:

方法一曲线拟合:从图像数据可以看出,乘客数据走势更拟合一条微微上翘的曲线,设y是x的多项式函数,可使用多项式拟合:y=ax3+bx2+cx+d。
方法二多特征拟合:代入更多条件,比如利用年份、月份作为参数代入
参考技术A Pytorch全连接层计算时间短的原因:

1、Pytorch全连接层使用了高效的矩阵乘法操作,可以大大减少计算时间。

2、Pytorch全连接层使用了GPU加速计算,可以极大提高计算效率。

3、Pytorch全连接层使用了矩阵展开技术,可以有效减少计算量。

4、Pytorch全连接层使用了双线性插值,可以更快地计算结果。

5、Pytorch全连接层使用了许多优化技术,可以实现更快的计算时间。
参考技术B pytorch全连接层计算时间短解决办法:PyTorch的全连接层使用CUDA加速可以显著
减少计算时间并且可以自动利用多张图像卡同时计算。它还可以调整数据格式减少数据加载和预处理的时间。
参考技术C 于卷积层
卷积层在计算时,它将输入的图像拆分成一个个小块,然后分别去卷积每一块,这也就是所谓的相关计算(也就是卷积过程中所用的滤波操作),这是一个比较耗时的过程,而全连接层只需要将输入数据和权重相乘,所以对于计算时间来说,全连接层要比卷积层少很多
参考技术D PyTorch的全连接层使用CUDA加速,可以显著减少计算时间,并且可以自动利用多张图像卡同时计算。它还可以调整数据格式,减少数据加载和预处理的时间。

以上是关于pytorch全连接层计算时间短的主要内容,如果未能解决你的问题,请参考以下文章

如何使用 PyTorch 中的单个全连接层直接将输入连接到输出?

网络中的网络 NiN 动手学深度学习v2 pytorch

Pytorch修改ResNet模型全连接层进行直接训练

全连接层提速

pytorch交叉熵损失函数 F.cross_entropy()

pytorch-torch2:张量计算和连接