bzoj 4259 4259: 残缺的字符串FFT
Posted lokiii
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 4259 4259: 残缺的字符串FFT相关的知识,希望对你有一定的参考价值。
和bzoj 4503 https://www.cnblogs.com/lokiii/p/10032311.html 差不多,就是再乘上一个原串字符
有点卡常,先在点值下算最后一起IDFT
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
const int N=1100005;
int n,m,bt,lm,re[N],tot;
long long x[N],y[N];
double sm;
char s[N],t[N];
struct cd
{
double a,b;
cd(double A=0,double B=0)
{
a=A,b=B;
}
cd operator + (const cd &x) const
{
return cd(a+x.a,b+x.b);
}
cd operator - (const cd &x) const
{
return cd(a-x.a,b-x.b);
}
cd operator * (const cd &x) const
{
return cd(a*x.a-b*x.b,a*x.b+b*x.a);
}
}a[N],b[N],c[N];
void dft(cd a[],int f)
{
for(int i=0;i<lm;i++)
if(i<re[i])
swap(a[i],a[re[i]]);
for(int i=1;i<lm;i<<=1)
{
cd wi=cd(cos(M_PI/i),f*sin(M_PI/i));
for(int k=0;k<lm;k+=(i<<1))
{
cd w=cd(1,0),x,y;
for(int j=0;j<i;j++)
{
x=a[j+k],y=w*a[i+j+k];
a[j+k]=x+y,a[i+j+k]=x-y;
w=w*wi;
}
}
}
if(f==-1)
for(int i=0;i<lm;i++)
a[i].a/=lm;
}
int main()
{
scanf("%d%d%s%s",&n,&m,t,s);
for(int i=0,j=n-1;i<j;i++,j--)
swap(t[i],t[j]);
for(int i=0;i<n;i++)
x[i]=(t[i]==‘*‘)?0:t[i]-‘a‘+1,a[i].a=x[i]*x[i]*x[i];
for(int i=0;i<m;i++)
y[i]=(s[i]==‘*‘)?0:s[i]-‘a‘+1,b[i].a=y[i];
for(bt=0;(1<<bt)<=n+m;bt++);
lm=1<<bt;
for(int i=0;i<lm;i++)
re[i]=(re[i>>1]>>1)|((i&1)<<(bt-1));
dft(a,1),dft(b,1);
for(int i=0;i<lm;i++)
c[i]=c[i]+a[i]*b[i];
for(int i=0;i<lm;i++)
a[i]=cd(x[i],0),b[i]=cd(y[i]*y[i]*y[i],0);
dft(a,1),dft(b,1);
for(int i=0;i<lm;i++)
c[i]=c[i]+a[i]*b[i];
for(int i=0;i<lm;i++)
a[i]=cd(x[i]*x[i],0),b[i]=cd(y[i]*y[i],0);
dft(a,1),dft(b,1);
for(int i=0;i<lm;i++)
c[i]=c[i]-a[i]*b[i]*cd(2,0);
dft(c,-1);
for(int i=n-1;i<m;i++)
if((int)(c[i].a+0.5)==0)
tot++;
printf("%d
",tot);
for(int i=n-1;i<m;i++)
if((int)(c[i].a+0.5)==0)
printf("%d ",i-n+2);
return 0;
}
以上是关于bzoj 4259 4259: 残缺的字符串FFT的主要内容,如果未能解决你的问题,请参考以下文章