朴素贝叶斯

Posted smallgrass

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了朴素贝叶斯相关的知识,希望对你有一定的参考价值。

1.理解分类与监督学习、聚类与无监督学习。

简述分类与聚类的联系与区别。

简述什么是监督学习与无监督学习。

 

2.朴素贝叶斯分类算法 实例

利用关于心脏情患者的临床数据集,建立朴素贝叶斯分类模型。

有六个分类变量(分类因子):性别,年龄、KILLP评分、饮酒、吸烟、住院天数

目标分类变量疾病:–心梗–不稳定性心绞痛

新的实例:–(性别=‘男’,年龄<70, KILLP=‘I‘,饮酒=‘是’,吸烟≈‘是”,住院天数<7)

最可能是哪个疾病?

上传演算过程。

 

3.编程实现朴素贝叶斯分类算法

利用训练数据集,建立分类模型。

输入待分类项,输出分类结果。

可以心脏情患者的临床数据为例,但要对数据预处理。

技术分享图片

 

 

 我写的代码:

import pandas as pd


def get(data,dic,result_doc):
    r1,r2,r3 = result_doc#第一个值为疾病 2心梗  3心绞痛
    df1 = data.groupby([r1]).size().reset_index()
    geng = 0
    jiao = 0
    for i,j in df1.values:
        if(i == r2):
            geng = j
        else:
            jiao = j
    temp1 =1
    temp2 = 1
    for i,j in dic.items():
        #a = data.ix[:,[i,‘疾病‘]]
        df=data.groupby([i,r1]).size().reset_index()
        for a,b,c in df.values:
            if(a==j and b==r2):
                temp1 = temp1*c/geng
    for i,j in dic.items():
        #a = data.ix[:,[i,‘疾病‘]]
        df=data.groupby([i,r1]).size().reset_index()
        for a,b,c in df.values:
            if(a==j and b==r3):
                temp2 = temp2*c/jiao

    if geng/len(data)*(temp1/temp2) > jiao/len(data)*(temp1/temp2):
        return 心梗
    else:
        return 心绞


if __name__ == __main__:
    data = pd.read_excel("d:/my_excel.xlsx")
    dic = {性别: , 年龄: <70, KILLP: 1, 饮酒: , 吸烟: , 住院天数: <7}
    print(get(data,dic,[疾病,心梗,不稳定性心绞痛]))

 技术分享图片

调库

from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import load_iris
iris = load_iris()
gnb = GaussianNB()  #模型
gnb.fit(iris.data,iris.target)  #训练
gnb.predict([[4.8, 3.5 , 4.2, 1.2])  #预测

 

以上是关于朴素贝叶斯的主要内容,如果未能解决你的问题,请参考以下文章

干货 | 朴素贝叶斯python代码实现

机器学习:贝叶斯分类器——高斯朴素贝叶斯分类器代码实现

朴素贝叶斯分类算法介绍及python代码实现案例

朴素贝叶斯并不朴素

利用朴素贝叶斯算法进行分类-Java代码实现

朴素贝叶斯代码实现python