机器学习

Posted javaloverx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习相关的知识,希望对你有一定的参考价值。

1)概况来讲,任何能够衡量模型预测出来的值h(θ)与真实值y之间的差异的函数都可以叫做代价函数C(θ),如果有多个样本,则可以将所有代价函数的取值求均值,记做J(θ)。因此很容易就可以得出以下关于代价函数的性质:

  • 对于每种算法来说,代价函数不是唯一的;
  • 代价函数是参数θ的函数;
  • 总的代价函数J(θ)可以用来评价模型的好坏,代价函数越小说明模型和参数越符合训练样本(x, y);
  • J(θ)是一个标量;

2). 代价函数的常见形式

  •  均方误差
  • 交叉熵

3)过度拟合的问题通常发生在变量(特征)过多的时候。这种情况下训练出的方程总是能很好的拟合训练数据,也就是说,我们的代价函数可能非常接近于 0 或者就为 0。

以上是关于机器学习的主要内容,如果未能解决你的问题,请参考以下文章

机器学习:机器学习工作流程

一文读懂什么是机器学习--1. 机器学习是什么?

机器学习机器学习的经典算法

机器学习基础教程笔记---机器学习概述

机器学习基础教程笔记---机器学习概述

机器学习入门