机器学习基础教程笔记---机器学习概述
Posted 龙鸣丿
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习基础教程笔记---机器学习概述相关的知识,希望对你有一定的参考价值。
目录
机器学习概述
了解机器学习定义以及应用场景
说明机器学习算法监督学习与无监督学习的区别
说明监督学习中的分类、回归特点
说明机器学习算法目标值的两种数据类型
说明机器学习(数据挖掘)的开发流程
1.1 人工智能概述
1.1.1 机器学习与人工智能、深度学习
-
机器学习和人工智能,深度学习的关系
-
机器学习是人工智能的一个实现途径
-
深度学习是机器学习的一个方法发展而来
-
当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。
-
达特茅斯会议-人工智能的起点
1956年8月,在美国汉诺斯小镇宁静的达特茅斯学院中,
约翰·麦卡锡(John McCarthy)
马文·闵斯基(Marvin Minsky,人工智能与认知学专家)
克劳德·香农(Claude Shannon,信息论的创始人)
艾伦·纽厄尔(Allen Newell,计算机科学家)
赫伯特·西蒙(Herbert Simon,诺贝尔经济学奖得主)等科学家正聚在一起,讨论着一个完全不食人间烟火的主题:
用机器来模仿人类学习以及其他方面的智能。
会议足足开了两个月的时间,虽然大家没有达成普遍的共识,但是却为会议讨论的内容起了一个名字:
因此,1956年也就成为了人工智能元年。
-
1.1.2 机器学习、深度学习能做些什么
机器学习的应用场景非常多,可以说渗透到了各个行业领域当中。医疗、航空、教育、物流、电商等等领域的各种场景。
-
-
用在挖掘、预测领域:
- 应用场景:店铺销量预测、量化投资、广告推荐、企业客户分类、SQL语句安全检测分类…
-
用在图像领域:
-
应用场景:街道交通标志检测、人脸识别等等
-
-
-
用在自然语言处理领域:
-
应用场景:文本分类、情感分析、自动聊天、文本检测等等
-
-
当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。
-
1.1.3 人工智能阶段课程安排
1.2 什么是机器学习
1.2.1 定义
机器学习是从数据中自动分析获得模型,并利用模型对未知数据进行预测。
1.2.2 解释
- 我们人从大量的日常经验中归纳规律,当面临新的问题的时候,就可以利用以往总结的规律去分析现实状况,采取最佳策略。
- 从数据(大量的猫和狗的图片)中自动分析获得模型(辨别猫和狗的规律),从而使机器拥有识别猫和狗的能力。
- 从数据(房屋的各种信息)中自动分析获得模型(判断房屋价格的规律),从而使机器拥有预测房屋价格的能力。
从历史数据当中获得规律?这些历史数据是怎么的格式?
1.2.3 数据集构成
- 结构:特征值+目标值
1.3 机器学习算法分类
学习目标
-
目标
-
说明机器学习算法监督学习与无监督学习的区别
-
说明监督学习中的分类、回归特点
-
-
应用
- 无
分析1.2中的例子:
特征值:猫/狗的图片;目标值:猫/狗-类别
- 分类问题
特征值:房屋的各个属性信息;目标值:房屋价格-连续型数据
- 回归问题
- 特征值:人物的各个属性信息;目标值:无
- 无监督学习
1.3.1 总结
1.3.2 练习
说一下它们具体问题类别:
1、预测明天的气温是多少度?
2、预测明天是阴、晴还是雨?
3、人脸年龄预测?
4、人脸识别?
1.3.3 机器学习算法分类
- 监督学习(supervised learning)(预测)
- 定义:输入数据是由输入特征值和目标值所组成。函数的输出可以是一个连续的值(称为回归),或是输出是有限个离散值(称作分类)。
- 分类 k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络
- 回归 线性回归、岭回归
- 无监督学习(unsupervised learning)
- 定义:输入数据是由输入特征值所组成。
- 聚类 k-means
1.4 机器学习开发流程
- 流程图:
1.5 学习框架和资料介绍
需明确几点问题:
(1)算法是核心,数据与计算是基础
(2)找准定位
大部分复杂模型的算法设计都是算法工程师在做,而我们
- 分析很多的数据
- 分析具体的业务
- 应用常见的算法
- 特征工程、调参数、优化
-
我们应该怎么做?
-
学会分析问题,使用机器学习算法的目的,想要算法完成何种任务
- 掌握算法基本思想,学会对问题用相应的算法解决
- 学会利用库或者框架解决问题
当前重要的是掌握一些机器学习算法等技巧,从某个业务领域切入解决问题。
1.5.1 机器学习库与框架
1.5.2 书籍资料
1.5.3 提深内功(但不是必须)
以上是关于机器学习基础教程笔记---机器学习概述的主要内容,如果未能解决你的问题,请参考以下文章