FCM算法的matlab程序(初步)

Posted kailugaji

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了FCM算法的matlab程序(初步)相关的知识,希望对你有一定的参考价值。

FCM算法的matlab程序

https://www.cnblogs.com/kailugaji/p/9648430.html 文章中已经介绍了FCM算法,现在用matlab程序实现它。

作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/

1.采用iris数据库

iris_data.txt

技术分享图片
5.1    3.5    1.4    0.2
4.9    3    1.4    0.2
4.7    3.2    1.3    0.2
4.6    3.1    1.5    0.2
5    3.6    1.4    0.2
5.4    3.9    1.7    0.4
4.6    3.4    1.4    0.3
5    3.4    1.5    0.2
4.4    2.9    1.4    0.2
4.9    3.1    1.5    0.1
5.4    3.7    1.5    0.2
4.8    3.4    1.6    0.2
4.8    3    1.4    0.1
4.3    3    1.1    0.1
5.8    4    1.2    0.2
5.7    4.4    1.5    0.4
5.4    3.9    1.3    0.4
5.1    3.5    1.4    0.3
5.7    3.8    1.7    0.3
5.1    3.8    1.5    0.3
5.4    3.4    1.7    0.2
5.1    3.7    1.5    0.4
4.6    3.6    1    0.2
5.1    3.3    1.7    0.5
4.8    3.4    1.9    0.2
5    3    1.6    0.2
5    3.4    1.6    0.4
5.2    3.5    1.5    0.2
5.2    3.4    1.4    0.2
4.7    3.2    1.6    0.2
4.8    3.1    1.6    0.2
5.4    3.4    1.5    0.4
5.2    4.1    1.5    0.1
5.5    4.2    1.4    0.2
4.9    3.1    1.5    0.2
5    3.2    1.2    0.2
5.5    3.5    1.3    0.2
4.9    3.6    1.4    0.1
4.4    3    1.3    0.2
5.1    3.4    1.5    0.2
5    3.5    1.3    0.3
4.5    2.3    1.3    0.3
4.4    3.2    1.3    0.2
5    3.5    1.6    0.6
5.1    3.8    1.9    0.4
4.8    3    1.4    0.3
5.1    3.8    1.6    0.2
4.6    3.2    1.4    0.2
5.3    3.7    1.5    0.2
5    3.3    1.4    0.2
7    3.2    4.7    1.4
6.4    3.2    4.5    1.5
6.9    3.1    4.9    1.5
5.5    2.3    4    1.3
6.5    2.8    4.6    1.5
5.7    2.8    4.5    1.3
6.3    3.3    4.7    1.6
4.9    2.4    3.3    1
6.6    2.9    4.6    1.3
5.2    2.7    3.9    1.4
5    2    3.5    1
5.9    3    4.2    1.5
6    2.2    4    1
6.1    2.9    4.7    1.4
5.6    2.9    3.6    1.3
6.7    3.1    4.4    1.4
5.6    3    4.5    1.5
5.8    2.7    4.1    1
6.2    2.2    4.5    1.5
5.6    2.5    3.9    1.1
5.9    3.2    4.8    1.8
6.1    2.8    4    1.3
6.3    2.5    4.9    1.5
6.1    2.8    4.7    1.2
6.4    2.9    4.3    1.3
6.6    3    4.4    1.4
6.8    2.8    4.8    1.4
6.7    3    5    1.7
6    2.9    4.5    1.5
5.7    2.6    3.5    1
5.5    2.4    3.8    1.1
5.5    2.4    3.7    1
5.8    2.7    3.9    1.2
6    2.7    5.1    1.6
5.4    3    4.5    1.5
6    3.4    4.5    1.6
6.7    3.1    4.7    1.5
6.3    2.3    4.4    1.3
5.6    3    4.1    1.3
5.5    2.5    4    1.3
5.5    2.6    4.4    1.2
6.1    3    4.6    1.4
5.8    2.6    4    1.2
5    2.3    3.3    1
5.6    2.7    4.2    1.3
5.7    3    4.2    1.2
5.7    2.9    4.2    1.3
6.2    2.9    4.3    1.3
5.1    2.5    3    1.1
5.7    2.8    4.1    1.3
6.3    3.3    6    2.5
5.8    2.7    5.1    1.9
7.1    3    5.9    2.1
6.3    2.9    5.6    1.8
6.5    3    5.8    2.2
7.6    3    6.6    2.1
4.9    2.5    4.5    1.7
7.3    2.9    6.3    1.8
6.7    2.5    5.8    1.8
7.2    3.6    6.1    2.5
6.5    3.2    5.1    2
6.4    2.7    5.3    1.9
6.8    3    5.5    2.1
5.7    2.5    5    2
5.8    2.8    5.1    2.4
6.4    3.2    5.3    2.3
6.5    3    5.5    1.8
7.7    3.8    6.7    2.2
7.7    2.6    6.9    2.3
6    2.2    5    1.5
6.9    3.2    5.7    2.3
5.6    2.8    4.9    2
7.7    2.8    6.7    2
6.3    2.7    4.9    1.8
6.7    3.3    5.7    2.1
7.2    3.2    6    1.8
6.2    2.8    4.8    1.8
6.1    3    4.9    1.8
6.4    2.8    5.6    2.1
7.2    3    5.8    1.6
7.4    2.8    6.1    1.9
7.9    3.8    6.4    2
6.4    2.8    5.6    2.2
6.3    2.8    5.1    1.5
6.1    2.6    5.6    1.4
7.7    3    6.1    2.3
6.3    3.4    5.6    2.4
6.4    3.1    5.5    1.8
6    3    4.8    1.8
6.9    3.1    5.4    2.1
6.7    3.1    5.6    2.4
6.9    3.1    5.1    2.3
5.8    2.7    5.1    1.9
6.8    3.2    5.9    2.3
6.7    3.3    5.7    2.5
6.7    3    5.2    2.3
6.3    2.5    5    1.9
6.5    3    5.2    2
6.2    3.4    5.4    2.3
5.9    3    5.1    1.8
View Code

2.matlab源程序

function [label_1,para_miu,iter]=My_FCM(K)
%输入K:聚类数
%输出:label_1:聚的类, para_miu_new:模糊聚类中心μ,responsivity:模糊隶属度
format long
eps=1e-5;  %定义迭代终止条件的eps
alpha=2;  %模糊加权指数,[1,+无穷)
max_iter=100;  %最大迭代次数
fitness=zeros(max_iter,1);
data=dlmread(‘E:kailugajidatairisiris_data.txt‘);
%----------------------------------------------------------------------------------------------------
%对data做最大-最小归一化处理
[data_num,data_dim]=size(data);
X=zeros(data_num,data_dim);
data_min=min(min(data));
data_max=max(max(data));
for j=1:data_dim
    for i=1:data_num
        X(i,j)=(data(i,j)-data_min)/(data_max-data_min);
    end
end
[X_num,X_dim]=size(X);
%----------------------------------------------------------------------------------------------------
%随机初始化K个聚类中心
responsivity=rand(X_num,K);  %初始化模糊隶属度矩阵,X_num*K
temp=sum(responsivity,2);  %把responsivity每一行加起来,把K类加起来,N*1的矩阵
responsivity=responsivity./(temp*ones(1,K));  %保证每行(每类)加起来为1
% ----------------------------------------------------------------------------------------------------
% FCM算法
for t=1:max_iter
    %更新聚类中心K*X_dim
    miu_up=(responsivity‘.^(alpha))*X;  %μ的分子部分
    para_miu=miu_up./((sum(responsivity.^(alpha)))‘*ones(1,X_dim));
    %欧氏距离,计算(X-para_miu)^2=X^2+para_miu^2-2*para_miu*X‘,矩阵大小为X_num*K
    distant=(sum(X.*X,2))*ones(1,K)+ones(X_num,1)*(sum(para_miu.*para_miu,2))‘-2*X*para_miu‘;
    %目标函数值
    fitness(t)=sum(sum(distant.*(responsivity.^(alpha))));
    %更新隶属度矩阵X_num*K
    R_up=distant.^(-1/(alpha-1));  %隶属度矩阵的分子部分
    responsivity=R_up./(sum(R_up,2)*ones(1,K));
    if t>1  %改成while不行
        if abs(fitness(t)-fitness(t-1))<eps
            break;
        end
    end
end
iter=t;  %实际迭代次数
[~,label_1]=max(responsivity,[],2);

3.结果

>> [label_1,para_miu,iter]=My_FCM(3)

label_1 =

     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     2
     3
     1
     3
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     3
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
     3
     1
     3
     3
     3
     3
     1
     3
     3
     3
     3
     3
     3
     1
     3
     3
     3
     3
     3
     1
     3
     1
     3
     1
     3
     3
     1
     1
     3
     3
     3
     3
     3
     1
     3
     3
     3
     3
     1
     3
     3
     3
     1
     3
     3
     3
     1
     3
     3
     1


para_miu =

   0.742022702491090   0.341109324494926   0.546444202834917   0.166211038362842
   0.628713244181207   0.424890497585326   0.177272144586390   0.019680088225303
   0.855591919324322   0.378458400808425   0.710902821949124   0.250368370455845


iter =

    18

4.注意

    由于初始化模糊隶属度矩阵是随机的,所以每次出现的结果并不一样,如果答案与上述不一致,很正常,可以设置迭代次数,求精度。如有不对之处,望指正。

以上是关于FCM算法的matlab程序(初步)的主要内容,如果未能解决你的问题,请参考以下文章

聚类——FCM的matlab程序

MATLAB程序:用FCM分割脑图像

GMM算法的matlab程序(初步)

K-means算法的matlab程序(初步)

图像分割基于FCM和改进的模糊聚类FCM实现脑部CT图像分割matlab源码

图像分割基于模糊聚类算法FCM实现图像分割matlab源码