RMQ问题 ST算法

Posted ppxppx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了RMQ问题 ST算法相关的知识,希望对你有一定的参考价值。

RMQ是询问某个区间的最大值或最小值的问题,主要求解方法之一ST算法;

ST算法其实是倍增思想的产物,等下看代码实现就很明显了

ST算法通常用在要多次询问一些区间的最值的问题中,相比于线段树,它的程序实现更简单,运行速度更快;

ST算法没有修改操作(或者说不擅长动态修改)

ST算法流程:

预处理:ST算法的原理实际上是动态规划,我们用a数组表示一组数,设(f[i,j])表示从(a[i])(a[i+2^j-1])这个范围内的最大值,从中间平均分成两部分,即把(f[i,j])分为(f[i,j-1])(f[i+2^{j-1},j-1])(是不是很像倍增!!!)

整个区间的最大值一定是左右两部分最大值的较大值,于是得到状态转移方程:

(f[i][j]=max(f[i][j-1],f[i+2^{j-1}][j-1]))

边界条件为(f[i][0]=a[i]);

于是我们可以预处理出f数组;

询问:若询问区间([l,r])的最大值,则先求出最大的x满足(2^x<=r-l+1),那么区间

([l,r]=[l,l+2^x-1]∪[r-2^x+1,r])

两个区间有并集,但不妨碍求区间最值,这也是ST算法只能求区间最值的原因;

求区间([x,y])的最大值,表达式为:

(k=log_2(y-x+1));

(ans=max(f[x][k],f[y-2^k+1][k]));

因为log函数效率不高,通常递推预处理k值(设(log[d])表示(log_2)d向下取整,取(log[d]=log[d/2]+1)):


log[0]=-1;//log[0]=-1,才能使log[1]=0
for(int i=1;i<=n;i++)
    log[i]=log[i>>1]+1;
    

模板:


log[0]=-1;
for(int i=1;i<=n;i++)//n个数的序列
    f[i][0]=a[i],log[i]=log[i>>1]+1;
//f[i][0]表示从i下标开始的2^0个数字的最大值是本身
//预处理处长度为1~n的log数组
for(int j=1;j<=LogN;j++)
//LogN一般取20即可
for(int i=1;i+(1<<j)-1<=n;i++)
//1<<j即2^j
    f[i][j]=max(f[i][j-1],f[i+(1<<j-1)][j-1])
while(m--){
    cin>>x>>y;//询问区间[x,y]内的最大值
    int k=log[y-x+1];//log2(y-x+1)向下取整的值
    cout<<max(f[x][k],f[y-(1<<k)+1][k]);
}

以上是关于RMQ问题 ST算法的主要内容,如果未能解决你的问题,请参考以下文章

[总结]RMQ问题&ST算法

RMQ算法 (ST算法)

hiho16 RMQ-ST算法RMQ-ST算法

RMQ问题(ST算法)

RMQ问题之ST算法

动态规划-RMQ问题(ST算法)