UPenn - Robotics 2:Computational Motion Planning - week 4: Artificial Potential Field Methods

Posted ecoflex

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了UPenn - Robotics 2:Computational Motion Planning - week 4: Artificial Potential Field Methods相关的知识,希望对你有一定的参考价值。

 
The basic idea here is to try to construct a smooth function over the extent of the configuration space, which has high values when the robot is near to an obstacle and lower values when it‘s further away.
 
 
If we can construct such a function, we can use it‘s gradient to guide the robot to the desired configuration.
 

 

技术分享图片

 

 

 

 

 技术分享图片

 

 

 

 技术分享图片 bowl-like shape

 

 

 

 技术分享图片

 

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 This is sometimes referred to as sensor based planning

 

laser sensor,...rangefinder

 

In fact, they can incorporated into real time control schemes, running at tens of hertz using local sensor data
 

 

 

 downside is local minima

 

 

 技术分享图片

 

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 hard to know local minima in advance

 

One way to view these artificial potential field based schemes is as a useful heuristic.

  

the use of a back tracking procedure to detect these situation

 

 


 

 

 

 

 

 

 

技术分享图片

 

 

 

 技术分享图片

 


 

 

 

技术分享图片

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

 

 技术分享图片

 

 

 

 

 技术分享图片

 

 

visible graph approach 1

 技术分享图片

 

 

 trapezoidal decomposition approach 2

 技术分享图片

 

 

 grid based approach 3

 技术分享图片

 

 

 上面: discretize space and use dijkstra


 

 下面:Tree search

 

 技术分享图片

 

 技术分享图片

 

 

 

 

 技术分享图片

 

 

 

 技术分享图片

 

以上是关于UPenn - Robotics 2:Computational Motion Planning - week 4: Artificial Potential Field Methods的主要内容,如果未能解决你的问题,请参考以下文章

UPenn - Robotics 5:Robotics: Estimation and Learning - week 3:Mapping

UPenn - Robotics 1:Aerial Robotics - week 2:Geometry and Mechanics

UPenn - Robotics 5:Robotics: Estimation and Learning - week 1:Gaussian Model Learning

UPenn - Robotics 5:Robotics: Estimation and Learning - week 2:Bayesian Estimation - Target Tracking(

UPenn - Robotics 2:Computational Motion Planning - week 2: Configuration Space

UPenn - Robotics 4:Perception - week 1:Geometry of Image Formation