爬虫之scrapy框架

Posted thismyblogs

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了爬虫之scrapy框架相关的知识,希望对你有一定的参考价值。

一 scrapy框架简介

1 介绍

Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。Scrapy 是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。

整体架构大致如下:

技术分享图片

 

技术分享图片
‘‘‘
Components:

1、引擎(EGINE)
引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件。有关详细信息,请参见上面的数据流部分。

2、调度器(SCHEDULER)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
3、下载器(DOWLOADER) 用于下载网页内容, 并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的
4、爬虫(SPIDERS) SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求
5、项目管道(ITEM PIPLINES) 在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作 下载器中间件(Downloader Middlewares)位于Scrapy引擎和下载器之间,主要用来处理从EGINE传到DOWLOADER的请求request,已经从DOWNLOADER传到EGINE的响应response,
你可用该中间件做以下几件事:   (1) process a request just before it is sent to the Downloader (i.e. right before Scrapy sends the request to the website);   (2) change received response before passing it to a spider;   (3) send a new Request instead of passing received response to a spider;   (4) pass response to a spider without fetching a web page;   (5) silently drop some requests.
6、爬虫中间件(Spider Middlewares) 位于EGINE和SPIDERS之间,主要工作是处理SPIDERS的输入(即responses)和输出(即requests) ‘‘‘
技术分享图片

官网链接

2 安装

技术分享图片
#Windows平台

1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
3、pip3 install lxml
4、pip3 install pyopenssl
5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
6、下载twisted的wheel文件:()http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted(在134天中海涛发的文件)

7、小黑框cmd中执行pip3 install 跟上下载的(或者海涛发的文件的)目录Twisted-17.9.0-cp36-cp36m-win_a

技术分享图片

3 命令行工具

技术分享图片
# 1 查看帮助
    scrapy -h
    scrapy <command> -h

# 2 有两种命令:其中Project-only必须切到项目文件夹下才能执行,而Global的命令则不需要
    Global commands:
        startproject #创建项目
        genspider    #创建爬虫程序
        settings     #如果是在项目目录下,则得到的是该项目的配置
        runspider    #运行一个独立的python文件,不必创建项目
        shell        #scrapy shell url地址  在交互式调试,如选择器规则正确与否
        fetch        #独立于程单纯地爬取一个页面,可以拿到请求头
        view         #下载完毕后直接弹出浏览器,以此可以分辨出哪些数据是ajax请求
        version      #scrapy version 查看scrapy的版本,scrapy version -v查看scrapy依赖库的版本
    Project-only commands:
        crawl        #运行爬虫,必须创建项目才行,确保配置文件中ROBOTSTXT_OBEY = False
        check        #检测项目中有无语法错误
        list         #列出项目中所包含的爬虫名
        edit         #编辑器,一般不用
        parse        #scrapy parse url地址 --callback 回调函数  #以此可以验证我们的回调函数是否正确
        bench        #scrapy bentch压力测试

# 3 官网链接
    https://docs.scrapy.org/en/latest/topics/commands.html
技术分享图片

4 目录结构

技术分享图片
‘‘‘
project_name/
   scrapy.cfg
   project_name/
       __init__.py
       items.py
       pipelines.py
       settings.py
       spiders/
           __init__.py
           爬虫1.py
           爬虫2.py
           爬虫3.py

‘‘‘
技术分享图片

文件说明:

  • scrapy.cfg  项目的主配置信息,用来部署scrapy时使用,爬虫相关的配置信息在settings.py文件中。
  • items.py    设置数据存储模板,用于结构化数据,如:Django的Model
  • pipelines    数据处理行为,如:一般结构化的数据持久化
  • settings.py 配置文件,如:递归的层数、并发数,延迟下载等。强调:配置文件的选项必须大写否则视为无效,正确写法USER_AGENT=‘xxxx‘
  • spiders      爬虫目录,如:创建文件,编写爬虫规则

注意:

1、一般创建爬虫文件时,以网站域名命名

2、默认只能在终端执行命令,为了更便捷操作:

1
2
3
#在项目根目录下新建:entrypoint.py
from scrapy.cmdline import execute
execute([‘scrapy‘‘crawl‘‘xiaohua‘])

框架基础:spider类,选择器,

二 Spider类

Spiders是定义如何抓取某个站点(或一组站点)的类,包括如何执行爬行(即跟随链接)以及如何从其页面中提取结构化数据(即抓取项目)。换句话说,Spiders是您为特定站点(或者在某些情况下,一组站点)爬网和解析页面定义自定义行为的地方。 

技术分享图片
‘‘‘
1、 生成初始的Requests来爬取第一个URLS,并且标识一个回调函数
     第一个请求定义在start_requests()方法内默认从start_urls列表中获得url地址来生成Request请求,
默认的回调函数是parse方法。回调函数在下载完成返回response时自动触发 2、 在回调函数中,解析response并且返回值 返回值可以4种: 包含解析数据的字典 Item对象 新的Request对象(新的Requests也需要指定一个回调函数) 或者是可迭代对象(包含Items或Request) 3、在回调函数中解析页面内容 通常使用Scrapy自带的Selectors,但很明显你也可以使用Beutifulsoup,lxml或其他你爱用啥用啥。 4、最后,针对返回的Items对象将会被持久化到数据库 通过Item Pipeline组件存到数据库:https://docs.scrapy.org/en/latest/topics/item-pipeline.html#topics-item-pipeline) 或者导出到不同的文件(通过Feed exports:https://docs.scrapy.org/en/latest/topics/feed-exports.html#topics-feed-exports) ‘‘‘
技术分享图片

三 选择器

技术分享图片
为了解释如何使用选择器,我们将使用Scrapy shell(提供交互式测试)和Scrapy文档服务器中的示例页面,

这是它的HTML代码:

<html>
 <head>
  <base href=‘http://example.com/‘ />
  <title>Example website</title>
 </head>
 <body>
  <div id=‘images‘>
   <a href=‘image1.html‘>Name: My image 1 <br /><img src=‘image1_thumb.jpg‘ /></a>
   <a href=‘image2.html‘>Name: My image 2 <br /><img src=‘image2_thumb.jpg‘ /></a>
   <a href=‘image3.html‘>Name: My image 3 <br /><img src=‘image3_thumb.jpg‘ /></a>
   <a href=‘image4.html‘>Name: My image 4 <br /><img src=‘image4_thumb.jpg‘ /></a>
   <a href=‘image5.html‘>Name: My image 5 <br /><img src=‘image5_thumb.jpg‘ /></a>
  </div>
 </body>
</html>

首先,让我们打开shell:

1 scrapy shell https://doc.scrapy.org/en/latest/_static/selectors-sample1.html
然后,在shell加载之后,您将获得响应作为response shell变量,并在response.selector属性中附加选择器。

让我们构建一个XPath来选择title标签内的文本:


>>> response.selector.xpath(‘//title/text()‘)
[<Selector (text) xpath=//title/text()>]
使用XPath和CSS查询响应非常常见,响应包括两个便捷快捷方式:response.xpath()和response.css():


>>> response.xpath(‘//title/text()‘)
[<Selector (text) xpath=//title/text()>]
>>> response.css(‘title::text‘)
[<Selector (text) xpath=//title/text()>]
正如你所看到的,.xpath()并且.css()方法返回一个 SelectorList实例,这是新的选择列表。此API可用于快速选择嵌套数据:


>>> response.css(‘img‘).xpath(‘@src‘).extract()
[u‘image1_thumb.jpg‘,
 u‘image2_thumb.jpg‘,
 u‘image3_thumb.jpg‘,
 u‘image4_thumb.jpg‘,
 u‘image5_thumb.jpg‘]
要实际提取文本数据,必须调用selector .extract() 方法,如下所示:


>>> response.xpath(‘//title/text()‘).extract()
[u‘Example website‘]
如果只想提取第一个匹配的元素,可以调用选择器 .extract_first()

>>> response.xpath(‘//div[@id="images"]/a/text()‘).extract_first()
u‘Name: My image 1 ‘
现在我们将获得基本URL和一些图像链接:

>>> response.xpath(‘//base/@href‘).extract()
[u‘http://example.com/‘]
 
>>> response.css(‘base::attr(href)‘).extract()
[u‘http://example.com/‘]
 
>>> response.xpath(‘//a[contains(@href, "image")]/@href‘).extract()
[u‘image1.html‘,
 u‘image2.html‘,
 u‘image3.html‘,
 u‘image4.html‘,
 u‘image5.html‘]
 
>>> response.css(‘a[href*=image]::attr(href)‘).extract()
[u‘image1.html‘,
 u‘image2.html‘,
 u‘image3.html‘,
 u‘image4.html‘,
 u‘image5.html‘]
 
>>> response.xpath(‘//a[contains(@href, "image")]/img/@src‘).extract()
[u‘image1_thumb.jpg‘,
 u‘image2_thumb.jpg‘,
 u‘image3_thumb.jpg‘,
 u‘image4_thumb.jpg‘,
 u‘image5_thumb.jpg‘]
 
>>> response.css(‘a[href*=image] img::attr(src)‘).extract()
[u‘image1_thumb.jpg‘,
 u‘image2_thumb.jpg‘,
 u‘image3_thumb.jpg‘,
 u‘image4_thumb.jpg‘,
 u‘image5_thumb.jpg‘]
技术分享图片

四 Item(项目)

抓取的主要目标是从非结构化源(通常是网页)中提取结构化数据。Scrapy蜘蛛可以像Python一样返回提取的数据。虽然方便和熟悉,但P很容易在字段名称中输入拼写错误或返回不一致的数据,尤其是在具有许多蜘蛛的较大项目中。

为了定义通用输出数据格式,Scrapy提供了Item类。 Item对象是用于收集抓取数据的简单容器。它们提供类似字典的 API,并具有用于声明其可用字段的方便语法。

1 声明项目

使用简单的类定义语法和Field 对象声明项。这是一个例子:

1
2
3
4
5
6
7
import scrapy
 
class Product(scrapy.Item):
name = scrapy.Field()
price = scrapy.Field()
stock = scrapy.Field()
last_updated = scrapy.Field(serializer=str)

注意那些熟悉Django的人会注意到Scrapy Items被宣告类似于Django Models,除了Scrapy Items更简单,因为没有不同字段类型的概念。

2 项目字段

Field对象用于指定每个字段的元数据。例如,last_updated上面示例中说明的字段的序列化函数。

您可以为每个字段指定任何类型的元数据。Field对象接受的值没有限制。出于同样的原因,没有所有可用元数据键的参考列表。

Field对象中定义的每个键可以由不同的组件使用,只有那些组件知道它。您也可以根据Field自己的需要定义和使用项目中的任何其他键。

Field对象的主要目标是提供一种在一个地方定义所有字段元数据的方法。通常,行为取决于每个字段的那些组件使用某些字段键来配置该行为。

3 使用项目

以下是使用上面声明的Product项目对项目执行的常见任务的一些示例 。您会注意到API与dict API非常相似。

4 扩展项目

您可以通过声明原始Item的子类来扩展Items(以添加更多字段或更改某些字段的某些元数据)。

例如:

1
2
3
class DiscountedProduct(Product):
      discount_percent = scrapy.Field(serializer=str)
      discount_expiration_date = scrapy.Field()

五 Item PipeLine

在一个项目被蜘蛛抓取之后,它被发送到项目管道,该项目管道通过顺序执行的几个组件处理它。

每个项目管道组件(有时简称为“项目管道”)是一个实现简单方法的Python类。他们收到一个项目并对其执行操作,同时决定该项目是否应该继续通过管道或被丢弃并且不再处理。

项目管道的典型用途是:

  • cleansing HTML data
  • validating scraped data (checking that the items contain certain fields)
  • checking for duplicates (and dropping them)
  • storing the scraped item in a database

1 编写自己的项目管道

技术分享图片
‘‘‘
每个项管道组件都是一个必须实现以下方法的Python类:

process_item(self,项目,蜘蛛)
为每个项目管道组件调用此方法。process_item() 

必须要么:返回带数据的dict,返回一个Item (或任何后代类)对象,返回Twisted Deferred或引发 DropItem异常。丢弃的项目不再由其他管道组件处理。

此外,他们还可以实现以下方法:

open_spider(self,蜘蛛)
打开蜘蛛时会调用此方法。

close_spider(self,蜘蛛)
当蜘蛛关闭时调用此方法。

from_crawler(cls,crawler )
如果存在,则调用此类方法以从a创建管道实例Crawler。它必须返回管道的新实例。Crawler对象提供对所有Scrapy核心组件的访问,
如设置和信号; 它是管道访问它们并将其功能挂钩到Scrapy的一种方式。
‘‘‘
技术分享图片

2 项目管道示例

(1) 价格验证和丢弃物品没有价格

让我们看看下面的假设管道,它调整 price那些不包含增值税(price_excludes_vat属性)的项目的属性,并删除那些不包含价格的项目:

(2) 将项目写入JSON文件

以下管道将所有已删除的项目(来自所有蜘蛛)存储到一个items.jl文件中,每行包含一个以JSON格式序列化的项目:

注意JsonWriterPipeline的目的只是介绍如何编写项目管道。如果您确实要将所有已删除的项目存储到JSON文件中,则应使用Feed导出

(3) 将项目写入数据库

在这个例子中,我们将使用pymongo将项目写入MongoDB。MongoDB地址和数据库名称在Scrapy设置中指定; MongoDB集合以item类命名。

这个例子的要点是展示如何使用from_crawler() 方法以及如何正确地清理资源:

(4) 重复过滤

一个过滤器,用于查找重复项目,并删除已处理的项目。假设我们的项目具有唯一ID,但我们的蜘蛛会返回具有相同ID的多个项目:

3 激活项目管道组件

要激活Item Pipeline组件,必须将其类添加到 ITEM_PIPELINES设置中,如下例所示:

1
2
3
4
ITEM_PIPELINES = {
    ‘myproject.pipelines.PricePipeline‘300,
    ‘myproject.pipelines.JsonWriterPipeline‘800,
}

您在此设置中为类分配的整数值决定了它们运行的??顺序:项目从较低值到较高值类进行。习惯上在0-1000范围内定义这些数字。

六 下载中间件

技术分享图片
class MyDownMiddleware(object):
    def process_request(self, request, spider):
        """
        请求需要被下载时,经过所有下载器中间件的process_request调用
        :param request: 
        :param spider: 
        :return:  
            None,继续后续中间件去下载;
            Response对象,停止process_request的执行,开始执行process_response
            Request对象,停止中间件的执行,将Request重新调度器
            raise IgnoreRequest异常,停止process_request的执行,开始执行process_exception
        """
        pass



    def process_response(self, request, response, spider):
        """
        spider处理完成,返回时调用
        :param response:
        :param result:
        :param spider:
        :return: 
            Response 对象:转交给其他中间件process_response
            Request 对象:停止中间件,request会被重新调度下载
            raise IgnoreRequest 异常:调用Request.errback
        """
        print(‘response1‘)
        return response

    def process_exception(self, request, exception, spider):
        """
        当下载处理器(download handler)或 process_request() (下载中间件)抛出异常
        :param response:
        :param exception:
        :param spider:
        :return: 
            None:继续交给后续中间件处理异常;
            Response对象:停止后续process_exception方法
            Request对象:停止中间件,request将会被重新调用下载
        """
        return None
技术分享图片

七 settings配置

技术分享图片 View Code

八 项目代码 

下载项目代码











以上是关于爬虫之scrapy框架的主要内容,如果未能解决你的问题,请参考以下文章

Python之Scrapy安装

走近代码之Python--爬虫框架Scrapy

爬虫框架Scrapy 之 --- scrapy文件

Python编程基础之(五)Scrapy爬虫框架

Python爬虫之Scrapy框架结构

Scrapy框架之基于RedisSpider实现的分布式爬虫