SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法
Posted ckxkexing
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法相关的知识,希望对你有一定的参考价值。
SPOJ - VFMUL:https://vjudge.net/problem/SPOJ-VFMUL
这是一道FFT求高精度的模板题。
参考:https://www.cnblogs.com/RabbitHu/p/FFT.html
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <complex> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; //#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ // #pragma GCC diagnostic error "-std=c++11" // #pragma comment(linker, "/stack:200000000") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << " "; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; typedef complex<double> cp; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl ‘ ‘ #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 // const int mod = 10007; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<‘0‘||ch>‘9‘) f|=(ch==‘-‘),ch=getchar(); while (ch>=‘0‘&&ch<=‘9‘) x=x*10+ch-‘0‘,ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 2*600009; //注意不能和len1+len2的和刚刚好,因为n是最近的2的阶乘 cp a[maxn], b[maxn], omg[maxn], inv[maxn]; int n=1; void init(){ memset(omg,0,sizeof(omg)); memset(inv,0,sizeof(inv)); for(int i = 0; i < n; i++){ omg[i] = cp(cos(2 * PI * i / n), sin(2 * PI * i / n)); inv[i] = conj(omg[i]); } } void fft(cp *a, cp *omg){ int lim = 0; while((1 << lim) < n) lim++; for(int i = 0; i < n; i++){ int t = 0; for(int j = 0; j < lim; j++) if((i >> j) & 1) t |= (1 << (lim - j - 1)); if(i < t) swap(a[i], a[t]); } for(int l = 2; l <= n; l *= 2){ int m = l / 2; for(cp *p = a; p != a + n; p += l) for(int i = 0; i < m; i++){ cp t = omg[n / l * i] * p[i + m]; p[i + m] = p[i] - t; p[i] += t; } } } char s1[maxn],s2[maxn]; int res[maxn]; int main(){ int T;scanf("%d", &T); while(T--){ n = 1; scanf("%s%s", s1, s2); int len1 = strlen(s1),len2 = strlen(s2); while(n < len1 + len2) n <<= 1; memset(a, 0 ,sizeof(a)); memset(b, 0 ,sizeof(b)); for(int i=0; i<len1; i++){ a[len1 - i - 1].real( s1[i] - ‘0‘); } for(int i=0; i<len2; i++){ b[len2 - i - 1].real( s2[i] - ‘0‘); } init(); fft(a, omg); fft(b, omg); for(int i=0; i<n; i++){ a[i] *= b[i]; } fft(a,inv); memset(res,0,sizeof(res)); for(int i=0; i<n; i++){ res[i] += double(a[i].real() / n + 0.5); res[i+1] += res[i] / 10; res[i] = res[i] % 10; } int s = len1 + len2 - 1; // debug(s); while(res[s] == 0 && s > 0)s--; for(int i = s; i>=0; i--){ putchar(‘0‘ + res[i]); } printf(" "); } return 0; }
以上是关于SPOJ - VFMUL - Very Fast Multiplication FFT加速高精度乘法的主要内容,如果未能解决你的问题,请参考以下文章
Query on a tree IV SPOJ - QTREE4
Adidas sneaker outlet very own eloquence along with his very