通过移动设备行为数据预测性别年龄

Posted chengchengaqin

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了通过移动设备行为数据预测性别年龄相关的知识,希望对你有一定的参考价值。

1. 通过行为习惯对移动用户人口属性(年龄+性别)进行预测。

2. 数据及包含~20万用户数据,分成12组,同时提供了用户行为属性,如:手机品牌、型号、APP的类型等。

3. 通过logloss评价

 

main.py

  1 # -*- coding: utf-8 -*-
  2 
  3 
  4 import pandas as pd
  5 import os
  6 from pd_tools import split_train_test, get_part_data
  7 import numpy as np
  8 from sklearn.preprocessing import LabelEncoder, OneHotEncoder
  9 from sklearn.preprocessing import StandardScaler
 10 from sklearn.linear_model import LogisticRegression
 11 from sklearn import svm
 12 from sklearn.decomposition import PCA
 13 from ml_tools import get_best_model
 14 from sklearn.metrics import log_loss
 15 from sklearn.feature_selection import VarianceThreshold
 16 
 17 # 数据集变量声明
 18 dataset_path = ./dataset
 19 gender_age_filename = gender_age.csv
 20 phone_brand_device_model_filename = phone_brand_device_model.csv
 21 events_filename = events.csv
 22 app_events_filename = app_events.csv
 23 app_labels_filename = app_labels.csv
 24 label_categories_filename = label_categories.csv
 25 
 26 train_gender_age_filename = gender_age_train.csv
 27 test_gender_age_filename = gender_age_test.csv
 28 
 29 is_first_run = False
 30 
 31 
 32 def run_main():
 33     """
 34         主函数
 35     """
 36     if is_first_run:
 37         # 1. 分割数据集
 38         print(分割数据集)
 39         all_gender_age = pd.read_csv(os.path.join(dataset_path, gender_age_filename))
 40         df_train, df_test = split_train_test(all_gender_age)
 41         # 查看训练集测试集基本信息
 42         print(训练集中各类的数据个数:, df_train.groupby(group).size())
 43         print(测试集中各类的数据个数:, df_test.groupby(group).size())
 44 
 45         # 保存分割的数据集
 46         df_train.to_csv(os.path.join(dataset_path, train_gender_age_filename),
 47                         index=False)
 48         df_test.to_csv(os.path.join(dataset_path, test_gender_age_filename),
 49                        index=False)
 50 
 51     # 2. 加载数据
 52     print(加载数据)
 53     # 加载数据
 54     gender_age_train = pd.read_csv(os.path.join(dataset_path, train_gender_age_filename),
 55                                    index_col=device_id)
 56     gender_age_test = pd.read_csv(os.path.join(dataset_path, test_gender_age_filename),
 57                                   index_col=device_id)
 58 
 59     # 选取部分数据用于实验
 60     percent = 0.1
 61     gender_age_train = get_part_data(gender_age_train, percent=percent)
 62     gender_age_test = get_part_data(gender_age_test, percent=percent)
 63 
 64     phone_brand_device_model = pd.read_csv(os.path.join(dataset_path, phone_brand_device_model_filename))
 65     # 去掉重复数据
 66     phone_brand_device_model = phone_brand_device_model.drop_duplicates(device_id).set_index(device_id)
 67 
 68     events = pd.read_csv(os.path.join(dataset_path, events_filename),
 69                          usecols=[device_id, event_id], index_col=event_id)
 70     app_events = pd.read_csv(os.path.join(dataset_path, app_events_filename),
 71                              usecols=[event_id, app_id])
 72     # app_labels = pd.read_csv(os.path.join(dataset_path, app_labels_filename))
 73 
 74     # 3. 特征工程
 75     # 3.1 手机品牌特征
 76     # 使用LabelEncoder将类别转换为数字
 77     brand_label_encoder = LabelEncoder()
 78     brand_label_encoder.fit(phone_brand_device_model[phone_brand].values)
 79     phone_brand_device_model[brand_label_code] =  80         brand_label_encoder.transform(phone_brand_device_model[phone_brand].values)
 81     gender_age_train[brand_label_code] = phone_brand_device_model[brand_label_code]
 82     gender_age_test[brand_label_code] = phone_brand_device_model[brand_label_code]
 83 
 84     # 使用OneHotEncoder将数字转换为OneHot码
 85     brand_onehot_encoder = OneHotEncoder()
 86     brand_onehot_encoder.fit(phone_brand_device_model[brand_label_code].values.reshape(-1, 1))
 87     tr_brand_feat = brand_onehot_encoder.transform(gender_age_train[brand_label_code].values.reshape(-1, 1))
 88     te_brand_feat = brand_onehot_encoder.transform(gender_age_test[brand_label_code].values.reshape(-1, 1))
 89 
 90     print([手机品牌]特征维度:, tr_brand_feat.shape[1])
 91 
 92     # 3.2 手机型号特征
 93     # 合并手机品牌与型号字符串
 94     phone_brand_device_model[brand_model] =  95         phone_brand_device_model[phone_brand].str.cat(phone_brand_device_model[device_model])
 96 
 97     # 使用LabelEncoder将类别转换为数字
 98     model_label_encoder = LabelEncoder()
 99     model_label_encoder.fit(phone_brand_device_model[brand_model].values)
100     phone_brand_device_model[brand_model_label_code] = 101         model_label_encoder.transform(phone_brand_device_model[brand_model].values)
102     gender_age_train[brand_model_label_code] = phone_brand_device_model[brand_model_label_code]
103     gender_age_test[brand_model_label_code] = phone_brand_device_model[brand_model_label_code]
104 
105     # 使用OneHotEncoder将数字转换为OneHot码
106     model_onehot_encoder = OneHotEncoder()
107     model_onehot_encoder.fit(phone_brand_device_model[brand_model_label_code].values.reshape(-1, 1))
108     tr_model_feat = model_onehot_encoder.transform(gender_age_train[brand_model_label_code].values.reshape(-1, 1))
109     te_model_feat = model_onehot_encoder.transform(gender_age_test[brand_model_label_code].values.reshape(-1, 1))
110 
111     print([手机型号]特征维度:, tr_model_feat.shape[1])
112 
113     # 3.3 安装app特征
114     device_app = app_events.merge(events, how=left, left_on=event_id, right_index=True)
115     # 运行app的总次数
116     n_run_s = device_app[app_id].groupby(device_app[device_id]).size()
117 
118     # 运行app的个数
119     n_app_s = device_app[app_id].groupby(device_app[device_id]).nunique()
120 
121     gender_age_train[n_run] = n_run_s
122     gender_age_train[n_app] = n_app_s
123 
124     # 填充缺失数据
125     gender_age_train[n_run].fillna(0, inplace=True)
126     gender_age_train[n_app].fillna(0, inplace=True)
127 
128     gender_age_test[n_run] = n_run_s
129     gender_age_test[n_app] = n_app_s
130 
131     # 填充缺失数据
132     gender_age_test[n_run].fillna(0, inplace=True)
133     gender_age_test[n_app].fillna(0, inplace=True)
134 
135     tr_run_feat = gender_age_train[n_run].values.reshape(-1, 1)
136     tr_app_feat = gender_age_train[n_app].values.reshape(-1, 1)
137 
138     te_run_feat = gender_age_test[n_run].values.reshape(-1, 1)
139     te_app_feat = gender_age_test[n_app].values.reshape(-1, 1)
140 
141     # 3.4 合并所有特征
142     tr_feat = np.hstack((tr_brand_feat.toarray(), tr_model_feat.toarray(), tr_run_feat, tr_app_feat))
143     te_feat = np.hstack((te_brand_feat.toarray(), te_model_feat.toarray(), te_run_feat, te_app_feat))
144     print(特征提取结束)
145     print(每个样本特征维度:, tr_feat.shape[1])
146 
147     # 3.5 特征范围归一化
148     scaler = StandardScaler()
149     tr_feat_scaled = scaler.fit_transform(tr_feat)
150     te_feat_scaled = scaler.transform(te_feat)
151 
152     # 3.6 特征选择
153     sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
154     tr_feat_scaled_sel = sel.fit_transform(tr_feat_scaled)
155     te_feat_scaled_sel = sel.transform(te_feat_scaled)
156 
157     # 3.7 PCA降维操作
158     pca = PCA(n_components=0.95)  # 保留95%共享率的特征向量
159     tr_feat_scaled_sel_pca = pca.fit_transform(tr_feat_scaled_sel)
160     te_feat_scaled_sel_pca = pca.transform(te_feat_scaled_sel)
161     print(特征处理结束)
162     print(处理后每个样本特征维度:, tr_feat_scaled_sel_pca.shape[1])
163 
164     # 4 为数据添加标签
165     group_label_encoder = LabelEncoder()
166     group_label_encoder.fit(gender_age_train[group].values)
167     y_train = group_label_encoder.transform(gender_age_train[group].values)
168     y_test = group_label_encoder.transform(gender_age_test[group].values)
169 
170     # 5. 训练模型
171     # 5.1 逻辑回归模型
172     print(训练逻辑回归模型...)
173     lr_param_grid = [
174         {C: [1e-3, 1e-2, 1e-1, 1, 10, 100]}
175     ]
176     lr_model = LogisticRegression()
177     best_lr_model = get_best_model(lr_model,
178                                    tr_feat_scaled_sel_pca, y_train,
179                                    lr_param_grid, cv=3)
180     y_pred_lr = best_lr_model.predict_proba(te_feat_scaled_sel_pca)
181 
182     # 5.2 SVM
183     print(训练SVM模型...)
184     svm_param_grid = [
185         {C: [1e-2, 1e-1, 1, 10, 100], gamma: [0.001, 0.0001], kernel: [rbf]},
186     ]
187 
188     # 设置probability=True用于输出预测概率
189     svm_model = svm.SVC(probability=True)
190     best_svm_model = get_best_model(svm_model,
191                                     tr_feat_scaled_sel_pca, y_train,
192                                     svm_param_grid, cv=3)
193     y_pred_svm = best_svm_model.predict_proba(te_feat_scaled_sel_pca)
194 
195     # 6. 查看结果
196     print(逻辑回归模型 logloss:, log_loss(y_test, y_pred_lr))
197     print(SVM logloss:, log_loss(y_test, y_pred_svm))
198 
199 
200 if __name__ == __main__:
201     run_main()

 

ml_tools.py

 1 # -*- coding: utf-8 -*-
 2 
 3 from sklearn.model_selection import GridSearchCV
 4 
 5 
 6 def get_best_model(model, X_train, y_train, params, cv=5):
 7     """
 8         交叉验证获取最优模型
 9         默认5折交叉验证
10     """
11     clf = GridSearchCV(model, params, cv=cv)
12     clf.fit(X_train, y_train)
13     return clf.best_estimator_

pd_tools.py

 1 # -*- coding: utf-8 -*-
 2 
 3 import pandas as pd
 4 import math
 5 
 6 
 7 def split_train_test(df_data, size=0.8):
 8     """
 9         分割训练集和测试集
10     """
11     # 为保证每个类中的数据能在训练集中和测试集中的比例相同,所以需要依次对每个类进行处理
12     df_train = pd.DataFrame()
13     df_test = pd.DataFrame()
14 
15     labels = df_data[group].unique().tolist()
16     for label in labels:
17         # 找出group的记录
18         df_w_label = df_data[df_data[group] == label]
19         # 重新设置索引,保证每个类的记录是从0开始索引,方便之后的拆分
20         df_w_label = df_w_label.reset_index()
21 
22         # 默认按80%训练集,20%测试集分割
23         # 这里为了简化操作,取前80%放到训练集中,后20%放到测试集中
24         # 当然也可以随机拆分80%,20%(尝试实现下DataFrame中的随机拆分)
25 
26         # 该类数据的行数
27         n_lines = df_w_label.shape[0]
28         split_line_no = math.floor(n_lines * size)
29         text_df_w_label_train = df_w_label.iloc[:split_line_no, :]
30         text_df_w_label_test = df_w_label.iloc[split_line_no:, :]
31 
32         # 放入整体训练集,测试集中
33         df_train = df_train.append(text_df_w_label_train)
34         df_test = df_test.append(text_df_w_label_test)
35 
36     df_train = df_train.reset_index()
37     df_test = df_test.reset_index()
38     return df_train, df_test
39 
40 
41 def get_part_data(df_data, percent=1):
42     """
43         从df_data中按percent选取部分数据
44     """
45     df_result = pd.DataFrame()
46     grouped = df_data.groupby(group)
47     for group_name, group in grouped:
48         n_group_size = group.shape[0]
49         n_part_size = math.floor(n_group_size * percent)
50         part_df = group.iloc[:n_part_size, :]
51         df_result = df_result.append(part_df)
52 
53     return df_result

dataset下载地址
链接:http://pan.baidu.com/s/1dE7D0bf
密码:yapd




以上是关于通过移动设备行为数据预测性别年龄的主要内容,如果未能解决你的问题,请参考以下文章

Excel项目实战-根据父母的购买行为来预测儿童的年龄,或者根据孩子的信息(年龄,性别等)来预测用户会购买哪种商品。

caffe实现年龄及性别预测

使用 OpenCV 进行图像中的性别预测和年龄检测

创建一个叫做People的类: 属性:姓名年龄性别身高 行为:说话计算加法改名 编写能为所有属性赋值的构造方法; 创建主类: 创建一个对象:名叫“张三”,性别“男”,年龄18岁,

创建一个叫做People的类: 属性:姓名年龄性别身高 行为:说话计算加法改名 编写能为所有属性赋值的构造方法; 创建主类: 创建一个对象:名叫“张三”,性别“男”,年龄18岁,身高1

np2016课程总结