AC自动机详解(附加可持久化AC自动机)

Posted jason2003

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AC自动机详解(附加可持久化AC自动机)相关的知识,希望对你有一定的参考价值。

AC自动机

AC自动机,说白了就是在trie树上跑kmp(其实个人感觉比kmp容易理解)。是一种多匹配串,单个主串的匹配。概括来说,就是将多个匹配串构造一个trie树,对于每个trie树的节点构造nxt指针,最后把主串放在上面跑。

 

构造trie

和普通的trie树构建一样,没有什么区别

inline void insert(char *s){

     int l=strlen(s);

     int u=1;

     REP(i,0,l-1){

              int c=calc(s[i]);

              if(!tree[u][c])  tree[u][c]=++total;

              u=tree[u][c];

     }

     isend[u]++;//注意isend的具体处理根据题目而定

     return ;

}

 

构造nxt数组

其实这一部分是AC自动机的核心,我们这样构造:对于每个节点,它的nxt是,它父亲的nxt的和它名字相同的儿子。如图,u的父亲是v,它父亲的nxta这个儿子就是unxt

技术分享图片

还有一种情况,就是如果节点u,它的没有a这个儿子,那么它就要把nxt[u]a这个儿子当成他的儿子。

技术分享图片

如图,因为u没有a的子节点,所以就连到nxt[u]a子节点。

那么这么做的原因是什么?我们来看一下这个图:

 技术分享图片

如图,这个trie树中前7个节点的next都已经构造完成了(箭头表示他们的nxt1nxt0,没有画出来).现在要找8next。按照“它的nxt是,它父亲的nxt的和它名字相同的儿子”的原则,我们找到8的父亲,7,发现7nxt5也没有B这个儿子,这时候我们需要找5next2,最终发现2B儿子,是4,讲8连到4

但是注意,其实我们这一个一个找nxt是可以省略的。如果按着刚才“因为u没有a的子节点,所以就连到nxt[u]a子节点。”树就会变成这样(黑线表示连边,红线表示next

技术分享图片5因为没有B儿子,就把他的nxt2,的B儿子:4,当成自己的儿子,7也同理,因为它没有A儿子,所以把他的nxtA儿子:2,当成自己的A儿子。再来看8,发现它的父亲的nxt5,的B儿子是4,所以自己的next就是4了。这样减少了刚才一个一个找nxt的步骤。

 

inline void getnxt(){//整个代码用BFS实现

     while(!Q.empty()) Q.pop();

     REP(i,0,25)  tree[0][i]=1;//一个非常重要的细节处理,我们加一个虚拟节点0,并将它的所有边都连到1,方便以后的运算

     nxt[1]=0;

     Q.push(1);

     while(!Q.empty()){

              int u=Q.front();//u是当前点,这时候nxt[u]已经处理过了,要处理的是u的儿子的nxt,也就是nxt[tree[u][i]]

              Q.pop();

              REP(i,0,25){//枚举u节点的每一个子节点

                       if(!tree[u][i])  tree[u][i]=tree[nxt[u]][i];//这就是刚才说的很重要的一步优化, 如果自己没有这个子节点,就把自己next的这个子节点当做自己的子节点。

                       else{

                           nxt[tree[u][i]]=tree[nxt[u]][i];//自己儿子的nxt等于自己nxt的儿子,这句话和“自己的nxt是,自己父亲的nxt的和它名字相同的儿子”的意思相同,只是主语从待更新节点变成已就更新节点。

                           Q.push(tree[u][i]);

                       }

              }

    }

    return ;

}

 

查找

  查找的具体实现是根据题目而定,我就拿这道题举个例子:给一大堆匹配串和一个主串,求有多少个匹配串在主串上出现过。

  这种题的做法就是现在构建trie树的时候,把每个单词的结尾都记录一下:isend[i]++。最后跑一遍AC自动机,到每一个节点是ans+=isend[i];isend=0;这样听起来很简单,那么怎么遍历AC自动机呢?

循环遍历主串s,令u表示当前点,每当主串s到下一位时,u=tree[u][s[i]-‘a’](就是等于它的儿子)。然后对于每个u,循环它的nxt直到根。每到一个点就ans+=isend。具体看代码:

inline void search(){

     int ans=0;

     int u=1;

     int l=strlen(t);

     REP(i,0,l-1){//循环遍历主串

              int c=calc(t[i]);//计算这个字符的ACCII码

              int k=tree[u][c];

              while(k>1){//对于每一个u遍历它的nxt,直到根

                       if(isend[k]){

                           ans+=isend[k];//加上isend,记录答案

                           isend[k]=0;

                       }

                       k=nxt[k];

              }

              u=tree[u][c];//遍历到它的儿子。

     }

     printf("%d
",ans);

}

 

总结

再来回顾一下AC自动机的步骤:构建trie树,构建next数组,查找。其中next有两个原则:1、当这个节点没有字符c这个儿子时,把自己的nextc这个儿子当做自己的儿子

2、自己儿子的nxt等于自己nxt的儿子

附上代码:

#include <iostream>

#include <cstdio>

#include <algorithm>

#include <cstring>

#include <cmath>

#include <cstdlib>

#include <queue>

#include <stack>

#include <vector>

using namespace std;

#define MAXN 100010

#define INF 10000009

#define MOD 10000007

#define LL long long

#define in(a) a=read()

#define REP(i,k,n) for(int i=k;i<=n;i++)

#define DREP(i,k,n) for(int i=k;i>=n;i--)

#define cl(a) memset(a,0,sizeof(a))

inline int read(){

         int x=0,f=1;char ch=getchar();

         for(;!isdigit(ch);ch=getchar()) if(ch==-) f=-1;

    for(;isdigit(ch);ch=getchar()) x=x*10+ch-0;

    return x*f;

}

inline void out(int x){

         if(x<0) putchar(-),x=-x;

         if(x>9) out(x/10);

         putchar(x%10+0);

}

int T,n;

int total=1;

int nxt[1000010],tree[500010][26];

char in[55];

int isend[1000010];

char t[1000010];

queue <int> Q;

int calc(char c){

         return c-a;

}

inline void insert(char *s){

         int l=strlen(s);

         int u=1;

         REP(i,0,l-1){

                   int c=calc(s[i]);

                   if(!tree[u][c])  tree[u][c]=++total;

                   u=tree[u][c];

         }

         isend[u]++;

         return ;

}

inline void getnxt(){//整个代码用BFS实现

         while(!Q.empty()) Q.pop();

         REP(i,0,25)  tree[0][i]=1;//一个非常重要的细节处理,我们加一个虚拟节点0,并将它的所有边都连到1,方便以后的运算

         nxt[1]=0;

         Q.push(1);

         while(!Q.empty()){

                   int u=Q.front();//u是当前点,这时候nxt[u]已经处理过了,要处理的是u的儿子的nxt,也就是nxt[tree[u][i]]

                   Q.pop();

                   REP(i,0,25){//枚举u节点的每一个子节点

                            if(!tree[u][i])  tree[u][i]=tree[nxt[u]][i];//这就是刚才说的很重要的一步优化, 如果自己没有这个子节点,就把自己next的这个子节点当做自己的子节点。

                            else{

                                nxt[tree[u][i]]=tree[nxt[u]][i];//自己儿子的nxt等于自己nxt的儿子,这句话和“自己的nxt是,自己父亲的nxt的和它名字相同的儿子”的意思相同,只是主语从待更新节点变成已就更新节点。

                                Q.push(tree[u][i]);

                            }

                   }

    }

    return ;

}

inline void search(){

         int ans=0;

         int u=1;

         int l=strlen(t);

         REP(i,0,l-1){//循环遍历主串

                   int c=calc(t[i]);//计算这个字符的ACCII码

                   int k=tree[u][c];

                   while(k>1){//对于每一个u遍历它的nxt,直到根

                            if(isend[k]){

                                ans+=isend[k];//加上isend,记录答案

                                isend[k]=0;

                            }

                            k=nxt[k];

                   }

                   u=tree[u][c];//便利到它的儿子。

         }

         printf("%d
",ans);

}

int main(){

         in(T);

         while(T--){

                   total=1;

                   cl(nxt);

                   cl(tree);

                   cl(isend);

                   in(n);

                   REP(i,1,n){

                            scanf("%s",in);

                            insert(in);

                   }

                   scanf("%s",t);

                   getnxt();

                   search();

         }

    return 0;

}

 

 

附加:可持久化AC自动机

 

  如果你希望每当你查找到一个字符串,然后要把它删去时,就需要可持久化AC自动机。其实和普通的AC自动机很想,唯一区别是查找的时候去掉了对于每一个u遍历nxt直到根的步骤,然后让每个u都压进栈,遇到end就弹出栈里面此字符串长度的元素。

 

以上是关于AC自动机详解(附加可持久化AC自动机)的主要内容,如果未能解决你的问题,请参考以下文章

ac自动机基本

ac自动机fail树上dfs序建可持久化线段树

牛客 - Elo mountains(AC自动机+可持久化数组优化)

AC自动机解决字符集很大的情况(可持久化数组优化getfail的过程)

AC自动机算法详解以及Java代码实现

AC自动机算法详解以及Java代码实现