计蒜客 ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem-数学公式题

Posted zero-

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了计蒜客 ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem-数学公式题相关的知识,希望对你有一定的参考价值。

 A. An Olympian Math Problem

 

  • 54.28%
  •  1000ms
  •  65536K
 

Alice, a student of grade 66, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

We denote k!k!:

k! = 1 imes 2 imes cdots imes (k - 1) imes kk!=1×2×?×(k1)×k

We denote SS:

S = 1 imes 1! + 2 imes 2! + cdots +S=1×1!+2×2!+?+
(n - 1) imes (n-1)!(n1)×(n1)!

Then SS module nn is ____________

You are given an integer nn.

You have to calculate SS modulo nn.

Input

The first line contains an integer T(T le 1000)T(T1000), denoting the number of test cases.

For each test case, there is a line which has an integer nn.

It is guaranteed that 2 le nle 10^{18}2n1018.

Output

For each test case, print an integer SS modulo nn.

Hint

The first test is: S = 1 imes 1!= 1S=1×1!=1, and 11 modulo 22 is 11.

The second test is: S = 1 imes 1!+2 imes 2!= 5S=1×1!+2×2!=5 , and 55 modulo 33 is 22.

样例输入

2
2
3

样例输出

1
2

题目来源

ACM-ICPC 2018 南京赛区网络预赛

 

 

题意很好理解。

直接代码

代码:

 1 //A-数学公式
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cstring>
 5 #include<algorithm>
 6 #include<bitset>
 7 #include<cassert>
 8 #include<cctype>
 9 #include<cmath>
10 #include<cstdlib>
11 #include<ctime>
12 #include<deque>
13 #include<iomanip>
14 #include<list>
15 #include<map>
16 #include<queue>
17 #include<set>
18 #include<stack>
19 #include<vector>
20 using namespace std;
21 typedef long long ll;
22 
23 const double PI=acos(-1.0);
24 const double eps=1e-6;
25 const ll mod=1e9+7;
26 const int inf=0x3f3f3f3f;
27 const int maxn=1e5+10;
28 const int maxm=100+10;
29 #define ios ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
30 //公式为1*1!+2*2!+3*3!+...+n*n!=(n+1)!-1,本题为(n!-1)%n
31 //因为n!-1=(n-1)*n-1=(n-2)*n+n-1,所以[(n-2)*n+(n-1)]%n=n-1
32 //因n*n!=(n+1-1)n!=(n+1)n!-n!=(n+1)!-n!
33 //所以:1*1!=2!-1!
34 //2*2!=3!-2!
35 //3*3!=4!-3!
36 //.
37 //n*n!=(n+1)!-n!
38 //相加后有:1*1!+2*2!+3*3!+.+n*n!=(n+1)!-1
39 //1*1!+2*2!+3*3!+.+n*n!=(n+1)!-1
40 //把最后一项拆开来,变成(n+1-1)n!=(n+1)n!-n!
41 
42 int main()
43 {
44     int t;
45     cin>>t;
46     while(t--){
47         ll n;
48         cin>>n;
49         cout<<n-1<<endl;
50     }
51 }

 

 

溜了,一会贴一下线段树的题目。

 

以上是关于计蒜客 ACM-ICPC 2018 南京赛区网络预赛 A. An Olympian Math Problem-数学公式题的主要内容,如果未能解决你的问题,请参考以下文章

ACM-ICPC 2018 南京赛区网络预赛 Magical Girl Haze 最短路

ACM-ICPC 2018 南京赛区网络预赛 E题

计蒜客 2018南京网络赛 I Skr ( 回文树 )

ACM-ICPC 2018 南京赛区网络预赛 Lpl and Energy-saving Lamps 线段树

ACM-ICPC 2018 南京赛区网络预赛

计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]