支持向量机(SVM)算法分析——周志华的西瓜书学习
Posted wzdly
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了支持向量机(SVM)算法分析——周志华的西瓜书学习相关的知识,希望对你有一定的参考价值。
1.线性可分
对于一个数据集:
如果存在一个超平面X能够将D中的正负样本精确地划分到S的两侧,超平面如下:
那么数据集D就是线性可分的,否则,不可分。
w称为法向量,决定了超平面的方向;b为位移量,决定了超平面与原点的距离。
样本空间中的任意点x到超平面X的距离(不太熟悉的可以复习高数中空间几何那一章的内容)可以写为:
使得下面两式成立的训练样本称为支持向量:
两个异类支持向量(一个等于+1,一个等于-1)到超平面的距离之和为:
它称之为“间隔”
想找到最大间隔的划分超平面,就是使最大:
等价于:
这就是支持向量机的基本模型。
对偶问题:
上式的拉格朗日函数可写为:
其中,
对参数w和b求导可得:
将上式带入到拉格朗日函数中,消去w和b,得到对偶表达式:
采用SMO算法完成对偶问题的求解:
原始论文地址:http://www-ai.cs.uni-dortmund.de/LEHRE/SEMINARE/SS09/AKTARBEITENDESDM/FOLIEN/Joerg_Nitschke_Sequential_minimal_optimization.pdf
以上是关于支持向量机(SVM)算法分析——周志华的西瓜书学习的主要内容,如果未能解决你的问题,请参考以下文章