GBDT为什么不能并行,XGBoost却可以

Posted zhibei

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了GBDT为什么不能并行,XGBoost却可以相关的知识,希望对你有一定的参考价值。

传统的GBDT是以CART作为基分类器,xgboost还支持线性分类器,这个时候XGBOOST相当于带L1和L2正则化的逻辑斯蒂回归(分类问题)或者线性回归(回归问题)。传统的GBDT在优化的hih只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数。顺便提一下,xgboost工具支持自定义代价函数,只要函数可一阶和二阶求导。

xgboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score是L2模的平方和。使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性。

Shrinkage(缩减),相当于学习速率。xgboost在进行完一次迭代后,会将叶子节点的权重乘上该系数,主要是为了消弱每棵树的影响,让后面有更大的学习空间。在实际应用中,一般把学习率设置的小一点,然后迭代次数设置的大一点(补充:传统GBDT的实现也有学习速率)

列抽样。xgboost借鉴了随机森林的做法,支持列抽样,不仅能降低过拟合,还能减少计算,这也是xgboost异于传统gbdt的一个特性。

对缺失值的处理。对于特征的值有缺失的样本,xgboost可以自动学习出她的分裂方向。

xgboost工具支持并行。boosting不是一种串行的结构吗?怎么并行的?

注意xgboost的并行不是tree粒度的并行,xgboost也是一次迭代完成才能进行下一次迭代的(第t次迭代的代价函数里面包含了前面t-1次迭代的预测值)。xgboost的并行是在特征粒度上的。我们知道,决策树的学习最耗时的一个步骤就是对特征的值进行排序(因为要确定最佳分割点),xgboost在训练之前,预先对数据进行排序,然后保存block结构,后面的迭代中重复的使用这个结构,大大减小计算量。这个block结构也使得并行称为了可能,在进行节点的分裂时,需要计算每个特征的增益,最终选增益最大的那个特征去做分裂,那么各个特征的增益计算就可以开多线程进行。

可并行的近似值方图算法。树节点在进行分裂时,我们需要计算每个特征的每个分割点对应的增益,即用贪心法枚举所有可能的分割点。当数据无法一次载入内存或者在分布式情况下,贪心算法效率就会变得很低,所以xgboost还提出了一种可并行的近似直方图算法,用于高效地生成候选的分割点

以上是关于GBDT为什么不能并行,XGBoost却可以的主要内容,如果未能解决你的问题,请参考以下文章

XgBoost的总结

机器学习:集成算法 - xgboost

xgboost需不需要特征挑选

xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度?

xgboost 参数调优指南

机器学习——XGboost算法