luoguP4213 [模板]杜教筛
Posted ljc00118
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了luoguP4213 [模板]杜教筛相关的知识,希望对你有一定的参考价值。
https://www.luogu.org/problemnew/show/P4213
同 bzoj3944
考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块里的莫比乌斯前缀和刚好用第二问来做
杜教筛的时候先线性筛出前 N 个数的莫比乌斯函数前缀和,其余的用 map 记忆化搜索,实测 N 取 3670000 最佳(其实我只测了3次)
#include <bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
template <typename _T>
inline void read(_T &f) {
f = 0; _T fu = 1; char c = getchar();
while(c < '0' || c > '9') {if(c == '-') fu = -1; c = getchar();}
while(c >= '0' && c <= '9') {f = (f << 3) + (f << 1) + (c & 15); c = getchar();}
f *= fu;
}
const int N = 3670000;
map <ll, ll> val;
int mu[N], pri[N], isp[N], s[N], len = 0;
int T, n;
void Mu() {
mu[1] = 1;
for(int i = 2; i <= N - 10; i++) {
if(!isp[i]) {pri[++len] = i; mu[i] = -1;}
for(int j = 1; j <= len && i * pri[j] <= (N - 10); j++) {
isp[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
mu[i * pri[j]] = -mu[i];
}
}
for(int i = 1; i <= N - 10; i++) s[i] = s[i - 1] + mu[i];
}
ll getmu(ll n) {
if(n <= N - 10) return (ll)s[n];
if(val.count(n)) return val[n];
ll ans = 0;
for(ll l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
ans += (r - l + 1) * getmu(n / l);
}
val[n] = 1 - ans;
return val[n];
}
ll getphi(ll n) {
ll ans = 0;
for(ll l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
ans += (getmu(r) - getmu(l - 1)) * (n / l) * (n / l);
}
return (ans + 1) >> 1;
}
int main() {
read(T); Mu();
while(T--) {
read(n);
printf("%lld %lld
", getphi(n), getmu(n));
}
return 0;
}
以上是关于luoguP4213 [模板]杜教筛的主要内容,如果未能解决你的问题,请参考以下文章