P4213 模板杜教筛(Sum) min_25筛

Posted olinr

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了P4213 模板杜教筛(Sum) min_25筛相关的知识,希望对你有一定的参考价值。

(color{#0066ff}{ 题目描述 })

给定一个正整数(N(Nle2^{31}-1))

(ans_1=sum_{i=1}^nvarphi(i))

(ans_2=sum_{i=1}^n mu(i))

(color{#0066ff}{输入格式})

一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问

(color{#0066ff}{输出格式})

一共T行,每行两个用空格分隔的数ans1,ans2

(color{#0066ff}{输入样例})

6
1
2
8
13
30
2333

(color{#0066ff}{输出样例})

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

(color{#0066ff}{数据范围与提示})

none

(color{#0066ff}{ 题解 })

可以用min_25筛写

对于(varphi)

要拆成两个,一个0次项,一个1次项

在收集答案的时候直接加它们两个的差即可

对于(mu)

因为只要指数超过1,就是0了,没用的,不同统计,直接统计1次的就行

#include<bits/stdc++.h>
#define LL long long
LL in() {
    char ch; LL x = 0, f = 1;
    while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    return x * f;
}
const int maxn = 2e6 + 10;
LL g0[maxn], g1[maxn], a[maxn];
int pri[maxn];
int m, sqt, n, tot;
int getid(LL x) { return x <= sqt? x : m - n / x + 1; }
LL getphi(LL a, int b) {
    if(a < pri[b]) return 0;
    LL ans = (g1[getid(a)] - g1[getid(pri[b - 1])]) - (g0[getid(a)] - g0[getid(pri[b - 1])]);
    for(int i = b; i <= tot && (LL)pri[i] * pri[i] <= a; i++) 
        for(LL x = pri[i], f = pri[i] - 1; x * pri[i] <= a; x *= pri[i], f *= pri[i])
             //phi[p^2]的贡献是p*(p-1)
            ans += (getphi(a / x, i + 1) * f + f * pri[i]);
    return ans;
}
LL getmu(LL a, int b) {
    if(a < pri[b]) return 0;
    LL ans = -g0[getid(a)] + g0[getid(pri[b - 1])];
    //只需枚举质数,次数就是1即可
    for(int i = b; i <= tot && (LL)pri[i] * pri[i] <= a; i++)
        //乘的那个f是-1,所以直接减,加的那个f是平方项=0, 不用管
        ans -= getmu(a / pri[i], i + 1);
    return ans;
}
int main() {
    for(int T = in(); T --> 0;) {
        n = in();
        sqt = sqrt(n);
        m = tot = 0;
        for(int i = 1; i <= n; i = a[m] + 1)
            a[++m] = n / (n / i), g0[m] = a[m] - 1, g1[m] = a[m] * (a[m] + 1) / 2 - 1;
        for(int i = 2; i <= sqt; i++) {
            if(g0[i] != g0[i - 1]) {
                LL sqr = i * i;
                pri[++tot] = i;
                for(int j = m; a[j] >= sqr; j--) {
                    int id = getid(a[j] / i);
                    g0[j] -= g0[id] - g0[i - 1];
                    g1[j] -= i * (g1[id] - g1[i - 1]);
                }
            }
        }
        printf("%lld %lld
", getphi(n, 1) + 1, getmu(n, 1) + 1);
    }
    return 0;
}

以上是关于P4213 模板杜教筛(Sum) min_25筛的主要内容,如果未能解决你的问题,请参考以下文章

洛谷P4213 Sum(杜教筛)

P4213模板杜教筛

P4213 模板杜教筛

奇怪的数学题(51nod1847)——min_25筛+杜教筛+第二类斯特林数

模板杜教筛(Sum)

模板杜教筛(Sum)