bzoj 2653middle
Posted edsheeran
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了bzoj 2653middle相关的知识,希望对你有一定的参考价值。
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2653
2653: middle
Time Limit: 20 Sec Memory Limit: 512 MBDescription
一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。给你一个
长度为n的序列s。回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。位置也从0开始标号。我会使用一些方式强制你在线。
Input
第一行序列长度n。接下来n行按顺序给出a中的数。
接下来一行Q。然后Q行每行a,b,c,d,我们令上个询问的答案是
x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的
要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。
第一行所谓“排过序”指的是从小到大排序!
n<=20000,Q<=25000
Output
Q行依次给出询问的答案。
Sample Input
5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
Sample Output
271451044
271451044
969056313
271451044
969056313
我线段树查询某端最大值时写错了,我是直接+nd->ls->sum, 其实应该查询(L, R, Ls)的sum, 因为L不一定在mid的左边;这个沙雕问题调了好久啊
// luogu-judger-enable-o2 #include<bits/stdc++.h> using namespace std; const int M = 200005; struct Node{ Node *ls, *rs; int sum, zd[2]; void up(){ sum = ls->sum + rs->sum; zd[0] = max(ls->sum + rs->zd[0], ls->zd[0]); zd[1] = max(rs->sum + ls->zd[1], rs->zd[1]); } }pool[M * 32], *tail = pool, *zero, *root[M]; int a[M]; struct Point{int pos, val;}b[M]; bool cmp(Point a, Point b){ return a.val < b.val; } int n; #define Ls nd->ls, lf, mid #define Rs nd->rs, mid + 1, rg int query(int L, int R, int opt, Node * nd, int lf = 1, int rg = n){ if(L > R)return 0; if(lf >= L && rg <= R){ if(opt == 2)return nd->sum; return nd->zd[opt]; } int mid = (lf + rg) >> 1; int sum = 0; if(opt == 2){ if(L <= mid)sum += query(L, R, opt, Ls); if(R > mid)sum += query(L, R, opt, Rs); return sum; } else if(opt == 0){ if(R > mid)sum = query(L, R, opt, Rs); if(L <= mid)sum = max(query(L, R, 2, Ls) + sum, query(L, R, opt, Ls)); } else { if(L <= mid)sum = query(L, R, opt, Ls); if(R > mid)sum = max(query(L, R, 2, Rs) + sum , query(L, R, opt, Rs)); } return max(sum, 0); } int x; Node * build(int lf = 1, int rg = n){ Node *nd = ++tail; if(lf == rg) nd->sum = nd->zd[0] = nd->zd[1] = 1; else { int mid = (lf + rg) >> 1; nd->ls = build(lf, mid); nd->rs = build(mid + 1, rg); nd->up(); } return nd; } Node * insert(int pos, Node *nd, int lf = 1, int rg = n){ Node *nnd = ++tail; if(lf == rg)nnd->sum = nnd->zd[0] = nnd->zd[1] = -1; else { int mid = (lf + rg) >> 1; if(pos <= mid){ nnd->rs = nd->rs; nnd->ls = insert(pos, Ls); } else { nnd->ls = nd->ls; nnd->rs = insert(pos, Rs); } nnd->up(); } return nnd; } int q[5]; int Query(){ int ans = 0; for(int i = 0; i < 4; i++)q[i]++;//, printf("%d ", q[i]);puts(""); int lf = 1, rg = n; while(lf <= rg){ int mid = (lf + rg) >> 1; int t1 = query(q[1], q[2], 2, root[mid]); int t2 = query(q[0], q[1] - 1, 1, root[mid]); int t3 = query(q[2] + 1, q[3], 0, root[mid]); int tt = t1 + t2 + t3; //printf("%d %d %d %d %d ", mid, t1, t2, t3, tt); if(tt >= 0)ans = mid, lf = mid + 1; else rg = mid - 1; } //printf("DONE "); return b[ans].val; } int main(){ // freopen("1.in","r",stdin); // freopen("my.out","w",stdout); int m; scanf("%d", &n); for(int i = 1; i <= n; i++){ scanf("%d", &a[i]); b[i].pos = i, b[i].val = a[i]; } sort(b + 1, b + 1 + n, cmp); root[1] = build(); //cout<<root[1]->sum<<endl; for(int i = 2; i <= n; i++){ //b[i].id = i; root[i] = insert(b[i - 1].pos, root[i - 1]); //cout<<root[i]->sum<<endl; } scanf("%d", &m); while(m--){ int a, b, c, d; scanf("%d%d%d%d", &a, &b, &c, &d); q[0] = (a+x)%n, q[1] = (b+x)%n, q[2] = (c+x)%n, q[3] = (d+x)%n; sort(q, q + 4); x = Query(); printf("%d ", x); } }
以上是关于bzoj 2653middle的主要内容,如果未能解决你的问题,请参考以下文章