TOJ 2560 Geometric Shapes(鍒ゆ柇澶氳竟褰㈡槸鍚︾浉浜?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TOJ 2560 Geometric Shapes(鍒ゆ柇澶氳竟褰㈡槸鍚︾浉浜?相关的知识,希望对你有一定的参考价值。

鏍囩锛?a href='http://www.mamicode.com/so/1/div' title='div'>div   鎻忚堪   wing   nbsp   geo   sum   rip   order   amp   

鎻忚堪

While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.

 

鎶€鏈垎浜浘鐗? src=

杈撳叆

Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:

? square: Followed by two distinct points giving the opposite corners of the square.
? rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
? line: Specifies a line segment, two distinct end points are given.
? triangle: Three points are given, they are guaranteed not to be co-linear.
? polygon: Followed by an integer number N (3 鈮?N 鈮?20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | 鈮?10000.

The picture description is terminated by a line containing a single dash (鈥?鈥?. After the last picture, there is a line with one dot (鈥?鈥?.

杈撳嚭

For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:

? 鈥淴 has no intersections鈥? if X does not intersect with any other shapes.
? 鈥淴 intersects with A鈥? if X intersects with exactly 1 other shape.
? 鈥淴 intersects with A and B鈥? if X intersects with exactly 2 other shapes.
? 鈥淴 intersects with A, B, . . ., and Z鈥? if X intersects with more than 2 other shapes.

Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

鏍蜂緥杈撳叆

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

鏍蜂緥杈撳嚭

A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B

A has no intersections
B has no intersections

棰樻剰

缁欎綘澶氳竟褰紝濡傛灉鍦ㄥ唴閮ㄥ垯瑙嗕负涓嶇浉浜わ紝鍒ゆ柇鍝簺鏄浉浜ょ殑

棰樿В

鎶婂杈瑰舰鎸夎竟瀛橈紝濡傛灉涓や釜澶氳竟褰㈢浉浜わ紝閭d箞涓€瀹氬瓨鍦ㄤ袱鏉¤竟鐩镐氦

鍒ゆ柇涓ゆ潯杈圭浉浜わ紝鍏堢敤淇╃煩褰㈠揩閫熸帓鏂ワ紝鍐嶇敤璺ㄧ珛瀹為獙锛屽鏋渁b鍜宑d鐩镐氦锛岄偅涔坈d鐨勪袱绔竴瀹氬湪鍚戦噺ab鐨勪袱渚э紝鍙互閫氳繃abc鍜宎bd鍙夌Н鐩镐箻<0鍒ゆ柇鏄惁鐩镐氦

鐒跺悗灏辨槸瀛樺杈瑰舰锛岃繖閲屾鏂瑰舰鍜岀煩褰㈠彟澶栫殑鐐瑰緱閫氳繃鍚戦噺璁$畻涓€涓?/span>

PS锛氱爜鍐滈锛岃杈撳叆锛岃緭鍑洪兘鎭跺績锛岄鐩笉绠楀お闅?/span>

浠g爜

  1 #include<cstdio>
  2 #include<algorithm>
  3 #include<vector>
  4 #include<set>
  5 using namespace std;
  6 struct point
  7 {
  8     double x,y;
  9     point(double x=0,double y=0):x(x),y(y){}
 10 };
 11 bool judge(point a,point b,point c,point d)
 12 {
 13     if(!(min(a.x,b.x)<=max(c.x,d.x)&&min(c.y,d.y)<=max(a.y,b.y)&&min(c.x,d.x)<=max(a.x,b.x)&&min(a.y,b.y)<=max(c.y,d.y)))
 14         return false;
 15     double u,v,w,z;
 16     u=(c.x-a.x)*(b.y-a.y)-(b.x-a.x)*(c.y-a.y);
 17     v=(d.x-a.x)*(b.y-a.y)-(b.x-a.x)*(d.y-a.y);
 18     w=(a.x-c.x)*(d.y-c.y)-(d.x-c.x)*(a.y-c.y);
 19     z=(b.x-c.x)*(d.y-c.y)-(d.x-c.x)*(b.y-c.y);
 20     return (u*v<=0.00000001&&w*z<=0.00000001);
 21 }
 22 vector<point>G[27];
 23 
 24 int main()
 25 {
 26     //freopen("A.txt","w",stdout);
 27     int m;
 28     double a,b;
 29     char op[3],shape[20];
 30     while(scanf("%s",op)!=EOF,op[0]!=鈥?/span>.鈥?/span>)
 31     {
 32         for(int i=0;i<26;i++)G[i].clear();
 33         while(op[0]!=鈥?/span>-鈥?/span>)
 34         {
 35             int cnt=op[0]-鈥?/span>A鈥?/span>;
 36             scanf("%s",shape);
 37             if(shape[0]==鈥?/span>s鈥?/span>)///姝f柟褰?/span>
 38             {
 39                 for(int i=1;i<=2;i++)
 40                 {
 41                     scanf(" (%lf,%lf)",&a,&b);
 42                     G[cnt].push_back(point(a,b));
 43                 }
 44                 double A=G[cnt][0].x,B=G[cnt][0].y,C=G[cnt][1].x,D=G[cnt][1].y;
 45                 G[cnt].push_back(point((A*1.0+B+C-D)/2.0,(-A*1.0+B+C+D)/2.0));
 46                 G[cnt].push_back(point((A*1.0-B+C+D)/2.0,(A*1.0+B-C+D)/2.0));
 47                 swap(G[cnt][1],G[cnt][2]);
 48                 G[cnt].push_back(G[cnt][0]);
 49             }
 50             if(shape[0]==鈥?/span>r鈥?/span>)///鐭╁舰
 51             {
 52                 for(int i=1;i<=3;i++)
 53                 {
 54                     scanf(" (%lf,%lf)",&a,&b);
 55                     G[cnt].push_back(point(a,b));
 56                 }
 57                 G[cnt].push_back(point(G[cnt][0].x*1.0+G[cnt][2].x-G[cnt][1].x,G[cnt][0].y*1.0+G[cnt][2].y-G[cnt][1].y));
 58                 G[cnt].push_back(G[cnt][0]);
 59             }
 60             if(shape[0]==鈥?/span>l鈥?/span>)///绾?/span>
 61             {
 62                 for(int i=1;i<=2;i++)
 63                 {
 64                     scanf(" (%lf,%lf)",&a,&b);
 65                     G[cnt].push_back(point(a,b));
 66                 }
 67             }
 68             if(shape[0]==鈥?/span>t鈥?/span>)///涓夎褰?/span>
 69             {
 70                 for(int i=1;i<=3;i++)
 71                 {
 72                     scanf(" (%lf,%lf)",&a,&b);
 73                     G[cnt].push_back(point(a,b));
 74                 }
 75                 G[cnt].push_back(G[cnt][0]);
 76             }
 77             if(shape[0]==鈥?/span>p鈥?/span>)///澶氳竟褰?/span>
 78             {
 79                 scanf("%d",&m);
 80                 for(int i=1;i<=m;i++)
 81                 {
 82                     scanf(" (%lf,%lf)",&a,&b);
 83                     G[cnt].push_back(point(a,b));
 84                 }
 85                 G[cnt].push_back(G[cnt][0]);
 86             }
 87             scanf("%s",op);
 88         }
 89         for(int i=0;i<26;i++)
 90         {
 91             int flag=0;
 92             set<int>SET;
 93             if((int)G[i].size()==0)continue;
 94             for(int j=0;j<(int)G[i].size()-1;j++)
 95             {
 96                 for(int k=0;k<26;k++)
 97                 {
 98                     if((int)G[k].size()==0||i==k)continue;
 99                     for(int l=0;l<(int)G[k].size()-1;l++)
100                     {
101                         if(judge(G[i][j],G[i][j+1],G[k][l],G[k][l+1]))
102                         {
103                             flag=1;
104                             SET.insert(k);
105                             break;
106                         }
107                     }
108                 }
109             }
110             if(flag==1)
111             {
112                 vector<int>VEC(SET.begin(),SET.end());
113                 int len=(int)VEC.size();
114                 printf("%c intersects with",i+鈥?/span>A鈥?/span>);
115                 if(len==2)
116                 {printf(" %c and %c
",VEC[0]+鈥?/span>A鈥?/span>,VEC[1]+鈥?/span>A鈥?/span>);continue;}
117                 for(int l=0;l<len-1;l++)
118                     printf(" %c,",VEC[l]+鈥?/span>A鈥?/span>);
119                 if(len>1)
120                     printf(" and %c",VEC[len-1]+鈥?/span>A鈥?/span>);
121                 else
122                     printf(" %c",VEC[len-1]+鈥?/span>A鈥?/span>);
123                 printf("
");
124             }
125             else
126                 printf("%c has no intersections
",i+鈥?/span>A鈥?/span>);
127         }
128         printf("
");
129     }
130     return 0;
131 }

 

以上是关于TOJ 2560 Geometric Shapes(鍒ゆ柇澶氳竟褰㈡槸鍚︾浉浜?的主要内容,如果未能解决你的问题,请参考以下文章

POJ 3449 Geometric Shapes 判断多边形相交

利用TikZ 宏包在 LaTeX 中绘制流程图

torch_geometric 笔记:TORCH_GEOMETRIC.UTILS(更新中)

torch_geometric.transforms 中的 AttributeError

GCN BASED ON pytorch geometric

PyTorch Geometric