椭圆曲线质因数分解2
Posted tmzbot
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了椭圆曲线质因数分解2相关的知识,希望对你有一定的参考价值。
#include <cstring>
#include <cstdio>
#include <cmath>
#include <utility>
#include <algorithm>
#include <chrono>
#include <random>
#include <vector>
#include <stdint.h>
typedef uint64_t u64;
typedef __uint128_t u128;
typedef __int128_t i128;
namespace Timer{
template<class T,class...Args>
std::pair<u64,T> Time(T(*func)(Args...ar),Args...ar){
using hrc=std::chrono::high_resolution_clock;
hrc::time_point start=hrc::now();
T out=func(ar...);
return std::pair<u64,T>(u64(std::chrono::duration_cast<std::chrono::nanoseconds>(hrc::now()-start)),out);
}
}
inline u128 getint() {
u128 ret=0;
bool ok=0,neg=0;
for(;;) {
int c=getchar();
if(c>=‘0‘&&c<=‘9‘) ret=(ret<<3)+ret+ret+c-‘0‘,ok=1;
else if(ok)return neg?0-ret:ret;
else if(c==‘-‘) neg=1;
}
}
void printint(u128 n) {
const u64 ten18=u64(1e18);
if (n>=ten18) printf("%llu%018llu",u64(n/ten18),u64(n%ten18));
else printf("%llu",u64(n));
}
#define rep(i,a,n) for (int i=a;i<n;i++)
struct u256 {
u256() {}
u256(u128 l,u128 h):lo(l),hi(h) {}
static u256 mul128(u128 a,u128 b) {
u64 a_hi=a>>64,a_lo=u64(a);
u64 b_hi=b>>64,b_lo=u64(b);
u128 p01=u128(a_lo)*b_lo;
u128 p12=u128(a_hi)*b_lo+u64(p01>>64);
u64 t_hi=p12>>64,t_lo=p12;
p12=u128(a_lo)*b_hi+t_lo;
u128 p23=u128(a_hi)*b_hi+u64(p12>>64)+t_hi;
return u256(u64(p01)|(p12<<64),p23);
}
u128 lo,hi;
};
struct Mont{
Mont(u128 n):mod(n) {
inv=n;
rep(i,0,6) inv*=2-n*inv;
r2=-n%n;
rep(i,0,4) if ((r2<<=1)>=mod) r2-=mod;
rep(i,0,5) r2=mul(r2,r2);
}
u128 reduce(u256 x) const {
u128 y=x.hi-u256::mul128(x.lo*inv,mod).hi;
return i128(y)<0?y+mod:y;
}
u128 reduce(u128 x) const { return reduce(u256(x,0)); }
u128 init(u128 n) const { return reduce(u256::mul128(n,r2)); }
u128 mul(u128 a,u128 b) const { return reduce(u256::mul128(a,b)); }
u128 mod,inv,r2;
};
// the Min-25 montgomery form manipulator
u128 ctz(u128 x){int a=__builtin_ctzll(u64(x>>64))+64,b=__builtin_ctzll(u64(x));return u64(x)?b:a;}
u128 gcd(u128 a,u128 b) {
if (b==0) return a;
int shift=ctz(a|b);
b>>=ctz(b);
while (a) {
a>>=ctz(a);
if (a<b) std::swap(a, b);
a-=b;
}
return b<<shift;
}
i128 invert(i128 a,i128 b){
if(!a||!b)return 0;
// putchar(‘:‘),printint(u128(a)),putchar(‘ ‘),printint(u128(b)),putchar(‘
‘);
bool truth=0;
if(a<0)a=-a,truth=1;
i128 b_or=b,alpha=1,beta=0;
while(!(a&1)){
if(alpha&1)alpha+=b_or;
alpha>>=1,a>>=1;
}if(b>a)std::swap(a,b),std::swap(alpha,beta);
while(b&&(a^b)){
a-=b;alpha-=beta;
while(!(a&1)){
if(alpha&1)alpha+=b_or;
alpha>>=1,a>>=1;
}if(b>a)std::swap(a,b),std::swap(alpha,beta);
}
if(a==b)b=0,alpha-=beta,std::swap(alpha,beta);
// putchar(‘:‘),printint(u128(alpha)),putchar(‘ ‘),printint(u128(beta)),putchar(‘
‘);
// putchar(‘:‘),printint(u128(-alpha)),putchar(‘ ‘),printint(u128(-beta)),putchar(‘
‘);
if(truth)alpha=b_or-alpha;
alpha=alpha%b_or;
if(alpha<0)alpha+=b_or;
if(a!=1)return 0;
return alpha;
}
//invert and gcd
u64 sqrt_approx(u64 x){
u64 approx=sqrt(double(x));
return (approx+x/approx)>>1;
}
u64 sqrt(u64 x){
u64 approx=sqrt(double(x));
u64 apt=(approx+x/approx)>>1;
approx=apt*apt;
if(approx>x)return apt-1;
if(x-approx>=2*apt-1)return apt+1;
return apt;
}
u128 sqrt(u128 r){
if(!(r>>64))return sqrt(u64(r));
int cnt=(((64-__builtin_clzll(u64(r>>64)))+1)|1)^1;
u128 approx=u128(sqrt_approx(u64(r>>cnt)))<<(cnt/2);
approx=(approx+r/approx)>>1;
u128 apt=u128(u64(approx))*u128(u64(approx));
return approx-((r-apt)>>127);
}
// fast int128 square root
#define ModularManipulate u128 n=Modu->mod; const auto add=[&] (u128 x,u128 y) { return (x+=y)>=n?x-n:x; }; const auto sub=[&] (u128 x,u128 y) { return i128(x-=y)<0?x+n:x; }; const auto mul=[&] (u128 x,u128 y) { return Modu->mul(x,y); }; const auto get=[&] (u128 x) { return Modu->reduce(x); }; const auto set=[&] (u128 x) { return Modu->init(x); }; const auto dbl=[&] (u128 x) { return (x<<=1)>=n?x-n:x; };
u128 invert(u128*inv,u128*lis,int len,Mont*Modu){
ModularManipulate
for(int i=1;i<len;++i)
inv[i-1]=lis[i],
lis[i]=mul(lis[i],lis[i-1]);
u128 invt=u128(invert(get(lis[len-1]),n));
// printint(get(lis[len-1])),putchar(‘ ‘),printint(invt),putchar(‘
‘);
if(!invt){
while(~--len){
u128 factor=gcd(lis[len],n);
if(factor==1)break;
if(factor<n)return factor;
}return 1;
}invt=set(invt);
for(int i=len-1;i;--i)
inv[i]=mul(invt,lis[i-1]),
invt=mul(invt,inv[i-1]);
inv[0]=invt;
return 0;
}
const int maxn=10010;
// invert a list of u128 in parallel, while returning 1 indicates failure, returning 0 indicates inverted,
// returning other indicates successful factorization
struct affine{u128 x,y,c;};
affine tempaff[10][maxn];
u128 tempui[10][maxn];//
u128 Add(affine*p1,affine*p2,int len,Mont*Modu){
ModularManipulate
u128*inv=tempui[0],*invr=tempui[1];
for(int i=0;i<len;++i)
inv[i]=sub(p1[i].x,p2[i].x);
u128 k=invert(invr,inv,len,Modu);
if(k)return k;
for(int i=0;i<len;++i){
k=mul(sub(p1[i].y,p2[i].y),invr[i]);
p2[i].x=sub(sub(mul(k,k),p1[i].x),p2[i].x);
p2[i].y=sub(mul(k,sub(p1[i].x,p2[i].x)),p1[i].y);
}return 0;
}
u128 Addsub_x(affine*p1,affine*p2,u128*sum,u128*dif,int len,Mont*Modu){
ModularManipulate
u128*inv=tempui[0];
for(int i=0;i<len;++i)
sum[i]=sub(p2[i].x,p1[i].x);
u128 k=invert(inv,sum,len,Modu),r;
if(k)return k;
for(int i=0;i<len;++i){
k=mul(sub(p2[i].y,p1[i].y),inv[i]);
r=mul(add(p2[i].y,p1[i].y),inv[i]);
sum[i]=sub(sub(mul(k,k),p1[i].x),p2[i].x);
dif[i]=sub(sub(mul(r,r),p1[i].x),p2[i].x);
}return 0;
}
u128 pow(u128 base,u128 exp,Mont*Modu){
ModularManipulate
u128 ca[4];
ca[0]=1;ca[1]=base;
ca[2]=mul(base,base),ca[3]=mul(ca[2],base);
bool f=0;
for(int i=126;i>=0;i-=2){
if(f)ca[0]=mul(ca[0],ca[0]),ca[0]=mul(ca[0],ca[0]);
int q=(exp>>i)&3;
if(q)f=1,ca[0]=mul(ca[0],ca[q]);
}return ca[0];
}
u128 Double(affine*p1,int len,Mont*Modu){
ModularManipulate
u128*inv=tempui[0],*invr=tempui[1];
for(int i=0;i<len;++i)
inv[i]=dbl(p1[i].y);
u128 k=invert(invr,inv,len,Modu);
if(k)return k;
for(int i=0;i<len;++i){
u128 r=p1[i].x;
k=mul(r,r);
k=mul(add(dbl(k),add(k,p1[i].c)),invr[i]);
p1[i].x=sub(mul(k,k),dbl(r));
p1[i].y=sub(mul(k,sub(r,p1[i].x)),p1[i].y);
}return 0;
}
u128 Sub(affine*p1,affine*p2,int len,Mont*Modu){
ModularManipulate
u128*inv=tempui[0],*invr=tempui[1];
for(int i=0;i<len;++i)
inv[i]=sub(p2[i].x,p1[i].x);
u128 k=invert(invr,inv,len,Modu);
if(k)return k;
for(int i=0;i<len;++i){
k=mul(add(p1[i].y,p2[i].y),invr[i]);
p2[i].x=sub(sub(mul(k,k),p1[i].x),p2[i].x);
p2[i].y=add(mul(k,sub(p1[i].x,p2[i].x)),p1[i].y);
}return 0;
}
u128 NAFConv(u64 E){//NAF with a leading 01. So use with E<2^63
u128 res=1;
while(E){
if(E&1)res=(res<<2)|(E&3),E-=2-(E&3);
else res<<=2;
E>>=1;
}return res;
}
#define prr(x) printpoints(x,len,Modu)
void printpoints(affine*af,int len,Mont*Modu){
ModularManipulate
printf("Count:
%d
[",len);
for(int i=0;i<len;++i){
putchar(‘[‘);
printint(get(af[i].x)),putchar(‘,‘),
printint(get(af[i].y)),putchar(‘,‘),
printint(get(af[i].c)),puts("],");
}
puts("]");
}
u128 FastMultiply(affine*p1,u64 d,int len,Mont*Modu){
if(d==1)return 0;
u128 Na=NAFConv(d);
affine*tem=tempaff[0];
std::copy(p1,p1+len,tem);
Na>>=2;
// prr(p1);
while(Na!=1){
int op=Na&3;
u128 k=Double(p1,len,Modu);
// puts("*2");
// prr(p1);
if(k)return k;
if(op==1)k=Add(tem,p1,len,Modu);//,puts("+1"),prr(p1),prr(tem);
else if(op==3)k=Sub(tem,p1,len,Modu);//,puts("-1"),prr(p1),prr(tem);
if(k)return k;
Na>>=2;
}return 0;
}
u128 InitPoints(u128*param,affine*points,int len,Mont*Modu){
ModularManipulate
u128 five=set(5),two=set(2),one=set(1);
for(int cn=0;cn<len;++cn){
u128 sigma=param[cn];
u128 u=sub(mul(sigma,sigma),five);
u128 v=dbl(dbl(sigma));
u128 i=mul(mul(u,u),dbl(dbl(mul(u,v))));
points[cn].x=u;
points[cn].y=v;
points[cn].c=i;
param[cn]=mul(i,v);
}
u128*inv=tempui[0];
u128 ret=invert(inv,param,len,Modu);
if(ret)return ret;
for(int j=0;j<len;++j){
u128 u=points[j].x,v=points[j].y,i=points[j].c;
u128 in=inv[j];
u128 t1=sub(v,u),t2=add(dbl(u),add(u,v));
t1=mul(mul(t1,t1),t1);
u128 a=sub(mul(mul(t1,t2),in),two);
t1=mul(u,mul(i,in));
u128 x0=mul(t1,mul(t1,t1));
u128 b=mul(add(x0,a),x0);
b=mul(add(b,one),x0);
x0=mul(b,x0);
u128 y0=mul(b,b);
t1=get(a);
while(t1%3)t1+=n;
t1=set(t1/3);
x0=add(x0,mul(t1,b));
t2=mul(y0,sub(one,mul(t1,a)));
points[j].x=x0;
points[j].y=y0;
points[j].c=t2;
}return 0;
}
namespace Sieve{
typedef unsigned int u32;
typedef unsigned long long ull;
const char pr60[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59};
const char masks[][4]={
{3,7,11,13},
{3,17,19,23},
{2,29,31},
{2,37,41},
{2,43,47},
{2,53,59}
};
const u32 segsize=65536;
void Apply_mask(u32*a,u32*b,u32 l1,u32 l2){
u32 t=0;
for(u32 q=0,r=l1/l2;q<r;++q)
for(u32 i=0;i<l2;++i)
a[t++]|=b[i];
for(u32 i=0;t<l1;++i)
a[t++]|=b[i];
}
void Gen_mask_sub(u32*a,u32 l1,u32 b){
u32 st=b>>1,rt=0;
while(rt<l1){
a[rt]|=1<<st;
st+=b;
if(st>=30)st-=30,++rt;
if(st>=30)st-=30,++rt;
}
}
void PrintMask(u32*a,u32 len){
printf("Mask of len %u
",len*60);
for(u32 i=0;i<len;++i){
for(u32 j=0;j<30;++j)
if((a[i]&(1<<j)))
printf("%llu
",i*60ull+j*2ull+1ull);
}
}
u32 Gen_mask(u32*a,int id){
int len=masks[id][0];
u32 ll=1;
for(int i=1;i<=len;++i)
ll*=masks[id][i];
memset(a,0,4*ll);
for(int i=1;i<=len;++i)
Gen_mask_sub(a,ll,masks[id][i]);
// PrintMask(a,ll);
return ll;
}
const u32 mask=0x1a4b3496;
const u32 pr60_m=0xdb4b3491;
u32 pr[10000][4],prl;
std::vector<u32> main(ull ma){
ull tma,tmx;
tma=(ma-1)/60+1;
tmx=tma*60;//upper limit
u32*sieve=new u32[tma];// getting a sieve ready
u32*maske=new u32[7429];
std::fill(sieve,sieve+tma,mask);
for(int i=0;i<6;++i)
Apply_mask(sieve,maske,tma,Gen_mask(maske,i));
ull preseg=std::min(tmx,ull(sqrt(double(ma))/60)+1);
u32 j=61;
for(;ull(j)*j<=preseg*60;j+=2){
u32 v=j/60,u=(j%60)>>1;
if(!(sieve[v]&(1<<u))){
v=j/30,u=j%30;
u32 rt=j*3/60,st=(j*3%60)>>1;
while(rt<preseg){
sieve[rt]|=1<<st;
rt+=v;
st+=u;
if(st>=30)st-=30,++rt;
}
pr[prl][0]=v;
pr[prl][1]=u;
pr[prl][2]=rt;
pr[prl][3]=st;
prl++;
}
} // Non-segmented sieve core
if(preseg==tmx)goto end;
for(u32 segl=preseg;segl<tma;segl+=segsize){
u32 segr=std::min(segl+segsize,u32(tma));
for(;ull(j)*j<=segr*60;j+=2){
u32 v=j/60,u=(j%60)>>1;
if(!(sieve[v]&(1<<u))){
v=j/30,u=j%30;
ull t=j*ull(j);
u32 rt=t/60,st=t%60>>1;
pr[prl][0]=v;
pr[prl][1]=u;
pr[prl][2]=rt;
pr[prl][3]=st;
prl++;
}
}
for(int i=0;i<prl;++i){
u32 v=pr[i][0],u=pr[i][1],rt=pr[i][2],st=pr[i][3];
while(rt<segr){
sieve[rt]|=1<<st;
rt+=v;
st+=u;
if(st>=30)st-=30,++rt;
}
pr[i][0]=v;
pr[i][1]=u;
pr[i][2]=rt;
pr[i][3]=st;
}
}
end:
sieve[0]=pr60_m;
std::vector<u32> ret;
ret.push_back(2);
for(u32 i=0;i<tma;++i){
for(u32 j=0;j<30;++j)
if(!(sieve[i]&(1<<j)))ret.push_back(i*60+j*2+1);
}
return ret;
}
}
u128 factor(u128 N,int SmoothBound,int curve_count,std::vector<unsigned int> primes){
u128*param=tempui[2];
Mont Mod(N);
Mont*Modu=&Mod;
ModularManipulate
for(int i=0;i<curve_count;++i)
param[i]=set(693595790+i);
affine*plist=tempaff[2];
u128 ret=InitPoints(param,plist,curve_count,&Mod);
// printpoints(plist,curve_count,&Mod);
if(ret)return ret;
u128 std=u128(1)<<63;
u64 qbound=u64(sqrt(N));
u64 rbound=qbound+sqrt(qbound)+1;
for(int i:primes){
if(i>SmoothBound)break;
u64 t=i,g=SmoothBound/i;
while(t<=g)t*=i;
ret=FastMultiply(plist,t,curve_count,Modu);
// printf("Mult %llu
",t);
// printpoints(plist,curve_count,&Mod);
if(ret)return ret;
}
return 1;
}
void Test(u128 N,int SmoothBound,int curve_count,std::vector<unsigned int> primes){
u128*param=tempui[2];
affine*plist=tempaff[2];
affine*plist2=tempaff[3];
Mont Mod(N);
Mont*Modu=&Mod;
ModularManipulate
for(int i=0;i<curve_count;++i)
param[i]=set(6+i);
u128 ret=InitPoints(param,plist,curve_count,&Mod);
printpoints(plist,curve_count,Modu);
std::copy(plist,plist+curve_count,plist2);
Double(plist,curve_count,Modu);
printpoints(plist,curve_count,Modu);
}
int main(){
u128 inp=getint();
std::vector<unsigned int> pr=Sieve::main(1000000);
u128 p=factor(inp,50000,160,pr);
u128 q=inp/p;
if(q<p)std::swap(p,q);
printint(p),putchar(‘ ‘),printint(q);
// Test(inp,200,1,pr);
return 0;
}
以上是关于椭圆曲线质因数分解2的主要内容,如果未能解决你的问题,请参考以下文章