强大而精致的机器学习调参方法:贝叶斯优化

Posted yangruigb2312

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了强大而精致的机器学习调参方法:贝叶斯优化相关的知识,希望对你有一定的参考价值。

一、简介

贝叶斯优化用于机器学习调参由J. Snoek(2012)提出,主要思想是,给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布。简单的说,就是考虑了上一次参数的信息**,从而更好的调整当前的参数。

他与常规的网格搜索或者随机搜索的区别是:

  • 贝叶斯调参采用高斯过程,考虑之前的参数信息,不断地更新先验;网格搜索未考虑之前的参数信息
  • 贝叶斯调参迭代次数少,速度快;网格搜索速度慢,参数多时易导致维度爆炸
  • 贝叶斯调参针对非凸问题依然稳健;网格搜索针对非凸问题易得到局部优最

二、理论

介绍贝叶斯优化调参,必须要从两个部分讲起:

  • 高斯过程,用以拟合优化目标函数
  • 贝叶斯优化,包括了“开采”和“勘探”,用以花最少的代价找到最优值

2.1 高斯过程

高斯过程可以用于非线性回归、非线性分类、参数寻优等等。以往的建模需要对 (p(y|X)) 建模,当用于预测时,则是

[ p(y_{N+1} | X_{N+1}) ]

而高斯过程则, 还考虑了 (y_N)(y_{N+1}) 之间的关系,即:

[ p(y_{N+1} | X_{N+1}, y_{N}) ]

高斯过程通过假设 (Y) 值服从联合正态分布,来考虑 (y_N)(y_{N+1}) 之间的关系,因此需要给定参数包括:均值向量和协方差矩阵,即:

[ egin{bmatrix} y_1 y_2 ... y_n \\end{bmatrix} sim N( mathbf{0}, egin{bmatrix} k(x_1, x_1) , k(x_1, x_2), ..., k(x_1, x_n) k(x_2, x_1) , k(x_2, x_2), ..., k(x_2, x_n) ... k(x_n, x_1) , k(x_n, x_2), ..., k(x_n, x_n) end{bmatrix} ) ]

其中协方差矩阵又叫做 核矩阵, 记为 (mathbf{K}) ,仅和特征 (x) 有关,和 (y) 无关。

高斯过程的思想是: 假设 (Y) 服从高维正态分布(先验),而根据训练集可以得到最优的核矩阵 ,从而得到后验以估计测试集 (Y*)

我们有后验:

[ p(y_*| mathbf{y} sim N(K_* K^{-1} mathbf{y}, ~ K_{**} - K_* K^{-1} K_*^T) ]

其中,(K_*)为训练集的核向量,有如下关系:

[ egin{bmatrix} mathbf{y} y_* end{bmatrix} sim N(mathbf{0}, egin{bmatrix} K, K_*^T K_*, K_{**} \\end{bmatrix}) ]

可以发现,在后验公式中,只有均值和训练集 (Y) 有关,方差则仅仅和核矩阵,也就是训练集和测试集的 (X) 有关,与训练集 (Y) 无关

高斯过程的估计(训练)方法

假设使用平方指数核(Squared Exponential Kernel),那么有:

[ k(x_1, x_2) = sigma^2_f exp(frac{-(x_1 - x_2)^2}{2 l^2}) ]

那么所需要的确定的超参数 ( heta = [sigma^2_f, l]) ,由于 (Y) 服从多维正态分布,因此似然函数为:

[ L = log p(y| x, heta) = - frac{1}{2} log|mathbf{K}| - frac{1}{2} (y - mu)^T mathbf{K}^{-1} (y - mu) - n*log(2pi)/2 ]

由于 (K) 是由 ( heta) 决定的,所以通过梯度下降即可求出超参数 ( heta),而根据核矩阵的计算方式也可以进行预测。

技术分享图片

上图是一张高斯分布拟合函数的示意图,可以看到,它只需要九个点,就可以大致拟合出整个函数形状(图片来自:https://github.com/fmfn/BayesianOptimization

2.2 贝叶斯优化理论

贝叶斯优化是一种逼近思想,当计算非常复杂、迭代次数较高时能起到很好的效果,多用于超参数确定

基本思想

是基于数据使用贝叶斯定理估计目标函数的后验分布,然后再根据分布选择下一个采样的超参数组合。它充分利用了前一个采样点的信息,其优化的工作方式是通过对目标函数形状的学习,并找到使结果向全局最大提升的参数

高斯过程 用于在贝叶斯优化中对目标函数建模,得到其后验分布

通过高斯过程建模之后,我们尝试抽样进行样本计算,而贝叶斯优化很容易在局部最优解上不断采样,这就涉及到了开发和探索之间的权衡。

  • 开发 (exploitation): 根据后验分布,在最可能出现全局最优解的区域进行采样, 开发高意味着均值高
  • 探索 (exploration): 在还未取样的区域获取采样点, 探索高意味着方差高

而如何高效的采样,即开发和探索,我们需要用到 Acquisition Function, 它是用来寻找下一个 x 的函数。

Acquistion Function

一般形式的Acquisition Funtion是关于x的函数,映射到实数空间R,表示改点的目标函数值能够比当前最优值大多少的概率,目前主要有以下几种主流的Acquisition Function

POI(probability of improvement)

[ POI(X) = P(f(X) ge f(X^+) + xi) = Phi(frac{mu(x) - f(X^+) - xi}{sigma(x)}) ]

其中, (f(X)) 为X的目标函数值, (f(X^+))到目前为止 最优的X的目标函数值, (mu(x), sigma(x)) 分别是高斯过程所得到的目标函数的均值和方差,即 (f(X)) 的后验分布。 (xi) 为trade-off系数,如果没有该系数,POI函数会倾向于取在 (X^+) 周围的点,即倾向于exploit而不是explore,因此加入该项进行权衡。

而我们要做的,就是尝试新的X,使得 (POI(X)) 最大,则采取该(X) (因为(f(X))的计算代价非常大),通常我们使用 蒙特卡洛模拟 的方法进行。

详细情况见下图(图片来自 Ref[5])

技术分享图片

Expected Improvement

POI是一个概率函数,因此只考虑了f(x) 比 (f(x^+)) 大的概率,而EI则是一个期望函数,因此考虑了 f(x) 比 (f(x^+)) 大多少。我们通过下式获取x

[ x = argmax_x E(max{0, f_{t+1}(x) - f(X^+)}| D_t) ]

其中 (D_t) 为前t个样本,在正态分布的假定下,最终得到:

[ EI(x) = egin{cases} (mu(x) - f(x^+)) Phi(Z) + sigma(x) phi(Z), if sigma(x) > 0 , if sigma(x) = 0 end{cases} ]

其中 (Z= frac{mu(x) - f(x^+)}{sigma(x)})

Confidence bound criteria

[ LCB(x) = mu(x) - kappa sigma(x) ]

[ UCB(x) = mu(x) + kappa sigma(x) ]

2.3 缺点和不足

  • 高斯过程核矩阵不好选

三、例子

目前可以做贝叶斯优化的包非常多,光是python就有:

本文使用BayesianOptimization为例,利用sklearn的随机森林模型进行分类

安装

pip install bayesian-optimization

前期准备

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score
from bayes_opt import BayesianOptimization

# 产生随机分类数据集,10个特征, 2个类别
x, y = make_classification(n_samples=1000,n_features=10,n_classes=2)

我们先看看不调参的结果:

rf = RandomForestClassifier()
print(np.mean(cross_val_score(rf, x, y, cv=20, scoring=‘roc_auc‘)))

>>> 0.965162

可以看到,不调参的话模型20此交叉验证AUC均值是0.965162,算是一个不错的模型,那么如果用bayes调参结果会怎么样呢

bayes调参初探

我们先定义一个目标函数,里面放入我们希望优化的函数。比如此时,函数输入为随机森林的所有参数,输出为模型交叉验证5次的AUC均值,作为我们的目标函数。因为bayes_opt库只支持最大值,所以最后的输出如果是越小越好,那么需要在前面加上负号,以转为最大值。由于bayes优化只能优化连续超参数,因此要加上int()转为离散超参数。

def rf_cv(n_estimators, min_samples_split, max_features, max_depth):
    val = cross_val_score(
        RandomForestClassifier(n_estimators=int(n_estimators),
            min_samples_split=int(min_samples_split),
            max_features=min(max_features, 0.999), # float
            max_depth=int(max_depth),
            random_state=2
        ),
        x, y, ‘roc_auc‘, cv=5
    ).mean()
    return val

然后我们就可以实例化一个bayes优化对象了:

 rf_bo = BayesianOptimization(
        rf_cv,
        {‘n_estimators‘: (10, 250),
        ‘min_samples_split‘: (2, 25),
        ‘max_features‘: (0.1, 0.999),
        ‘max_depth‘: (5, 15)}
    )

里面的第一个参数是我们的优化目标函数,第二个参数是我们所需要输入的超参数名称,以及其范围。超参数名称必须和目标函数的输入名称一一对应。

完成上面两步之后,我们就可以运行bayes优化了!

rf_bo.maximize()

完成的时候会不断地输出结果,如下图所示:

技术分享图片

等到程序结束,我们可以查看当前最优的参数和结果:

rf_bo.res[‘max‘]

>>> {‘max_params‘: {‘max_depth‘: 5.819908283575526,
  ‘max_features‘: 0.4951745603509127,
  ‘min_samples_split‘: 2.3110014720414958,
  ‘n_estimators‘: 249.73529231990733},
 ‘max_val‘: 0.9774079407940794}

bayes调参进阶

上面bayes算法得到的参数并不一定最优,当然我们会遇到一种情况,就是我们已经知道有一组或是几组参数是非常好的了,我们想知道其附近有没有更好的。这个操作相当于上文bayes优化中的Explore操作,而bayes_opt库给了我们实现此方法的函数:


rf_bo.explore(
    {‘n_estimators‘: [10, 100, 200],
        ‘min_samples_split‘: [2, 10, 20],
        ‘max_features‘: [0.1, 0.5, 0.9],
        ‘max_depth‘: [5, 10, 15]
    }
)

这里我们添加了三组较优的超参数,让其在该参数基础上进行explore,可能会得到更好的结果。

同时,我们还可以修改高斯过程的参数,高斯过程主要参数是核函数(kernel),还有其他参数可以参考sklearn.gaussianprocess

gp_param={‘kernel‘:None}
rf_bo.maximize(**gp_param)

最终我们的到参数如下:

{‘max_params‘: {‘max_depth‘: 5.819908283575526,
  ‘max_features‘: 0.4951745603509127,
  ‘min_samples_split‘: 2.3110014720414958,
  ‘n_estimators‘: 249.73529231990733},
 ‘max_val‘: 0.9774079407940794}

运行交叉验证测试一下:

rf = RandomForestClassifier(max_depth=6, max_features=0.39517, min_samples_split=2, n_estimators=250)
np.mean(cross_val_score(rf, x, y, cv=20, scoring=‘roc_auc‘))
>>> 0.9754953

得到最终结果是0.9755,比之前的0.9652提高了约0.01,做过kaggle的朋友都懂,这在后期已经是非常大的提高了!到后面想提高0.001都极其困难,因此bayes优化真的非常强大!

结束!

Reference

以上是关于强大而精致的机器学习调参方法:贝叶斯优化的主要内容,如果未能解决你的问题,请参考以下文章

使用贝叶斯优化工具实践XGBoost回归模型调参

机器学习调参与贝叶斯优化及其典型python实现hyperopt

机器学习调参自动优化方法

随机森林算法及贝叶斯优化调参Python实践

随机森林算法及贝叶斯优化调参Python实践

随机森林算法及贝叶斯优化调参Python实践