POJ-3104-Drying

Posted 1625--h

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ-3104-Drying相关的知识,希望对你有一定的参考价值。

Description

It is very hard to wash and especially to dry clothes in winter. But Jane is a very smart girl. She is not afraid of this boring process. Jane has decided to use a radiator to make drying faster. But the radiator is small, so it can hold only one thing at a time.

Jane wants to perform drying in the minimal possible time. She asked you to write a program that will calculate the minimal time for a given set of clothes.

There are n clothes Jane has just washed. Each of them took ai water during washing. Every minute the amount of water contained in each thing decreases by one (of course, only if the thing is not completely dry yet). When amount of water contained becomes zero the cloth becomes dry and is ready to be packed.

Every minute Jane can select one thing to dry on the radiator. The radiator is very hot, so the amount of water in this thing decreases by k this minute (but not less than zero — if the thing contains less than k water, the resulting amount of water will be zero).

The task is to minimize the total time of drying by means of using the radiator effectively. The drying process ends when all the clothes are dry.

Input

The first line contains a single integer n (1 ≤ n ≤ 100 000). The second line contains ai separated by spaces (1 ≤ ai ≤ 109). The third line contains k (1 ≤ k ≤ 109).

Output

Output a single integer — the minimal possible number of minutes required to dry all clothes.

Sample Input

sample input #1
3
2 3 9
5

sample input #2
3
2 3 6
5

Sample Output

sample output #1
3

sample output #2
2

1. 二分枚举时间。
2. 小于等于枚举时间mid的不用管。
3. 根据公式a[i] - k*t <= mid-t ==> t >= (a[i]-mid)/(k-1),要对后面取整。
4. 如果最后时间加起来超过了mid。那mid太小。不行。
5. 最后保存的是返回true的那个r。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <algorithm>
 4 #include <cmath>
 5 using namespace std;
 6 long long a[1000005];
 7 long long n,k;
 8 /*
 9 bool check(int mid)
10 {
11     int src = mid;
12     int cur;
13     for(int i=n;i>=1;i--)
14     {
15         cur = a[i];
16         if(cur<=src)
17             continue;
18         else
19         {
20             while(cur>src)
21             {
22                 cur -=k-1;
23                 mid--;
24             }
25         }
26     }
27     if(mid>=0)
28         return true;
29     else
30         return false;
31 }*/
32 
33 bool check(long long  mid)
34 {
35    unsigned long long sum(0);
36    for(int i = 1;i <=n;++i)
37    {
38       long long more = a[i] - mid;
39       if(more > 0)
40       {
41          sum += ((more + k - 1) / k);//或者在这里判断一下是否可以整除,然后分开加。
42       }
43    }
44    return sum <= mid;
45 }
46 int main()
47 {
48     while(~scanf("%lld",&n))
49     {
50         long long r = 0;
51         for(int i=1;i<=n;i++)
52         {
53             scanf("%lld",&a[i]);
54             r = max(r,a[i]);
55         }
56         scanf("%d",&k);
57         if(k==1)
58         {
59             printf("%lld
",r);
60             continue;
61         }
62         k--;
63         long long l = -1;
64         long long mid;
65         while(r-l>1)
66         {
67             mid = (r+l)>>1;
68             if(check(mid))
69                 r = mid;
70             else
71                 l = mid;
72         }
73         printf("%lld
",r);
74     }
75     return 0;
76 }

 









以上是关于POJ-3104-Drying的主要内容,如果未能解决你的问题,请参考以下文章

POJ 3104 Drying (二分&最大化最小值)

POJ3104 Drying(二分查找)

POJ-3104-Drying

POJ 3104 Drying(二分

POJ 3104 Drying(二分答案)

POJ - 3104 :Drying