运用jieba分词分析红楼梦相关的分词,出现次数最高的20个

Posted yeye-

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了运用jieba分词分析红楼梦相关的分词,出现次数最高的20个相关的知识,希望对你有一定的参考价值。

import jieba
from collections import Counter
import matplotlib.pyplot as plt
import numpy as np


class HlmNameCount():
# 此函数用于绘制条形图
def showNameBar(self,name_list_sort,name_list_count):
# x代表条形数量
x = np.arange(len(name_list_sort))
# 处理中文乱码
plt.rcParams[‘font.sans-serif‘] = [‘SimHei‘]
# 绘制条形图,bars相当于句柄
bars = plt.bar(x,name_list_count)
# 给各条形打上标签
plt.xticks(x,name_list_sort)
# 显示各条形具体数量
i = 0
for bar in bars:
plt.text((bar.get_x() + bar.get_width() / 2), bar.get_height(), ‘%d‘ % name_list_count[i], ha=‘center‘, va=‘bottom‘)
i += 1
# 显示图形
plt.show()

# 此函数用于绘制饼状图
def showNamePie(self, name_list_sort, name_list_fracs):
# 处理中文乱码
plt.rcParams[‘font.sans-serif‘] = [‘SimHei‘]
# 绘制饼状图
plt.pie(name_list_fracs, labels=name_list_sort, autopct=‘%1.2f%%‘, shadow=True)
# 显示图形
plt.show()

def getNameTimesSort(self,name_list,txt_path):
# 将所有人名临时添加到jieba所用字典,以使jieba能识别所有人名
for k in name_list:
jieba.add_word(k)
# 打开并读取txt文件
file_obj = open(txt_path, ‘rb‘).read()
# jieba分词
jieba_cut = jieba.cut(file_obj)
# Counter重新组装以方便读取
book_counter = Counter(jieba_cut)
# 人名列表,因为要处理凤姐所以不直接用name_list
name_dict ={}
# 人名出现的总次数,用于后边计算百分比
name_total_count = 0
for k in name_list:
if k == ‘熙凤‘:
# 将熙凤出现的次数合并到凤姐
name_dict[‘凤姐‘] += book_counter[k]
else:
name_dict[k] = book_counter[k]
name_total_count += book_counter[k]
# Counter重新组装以使用most_common排序
name_counter = Counter(name_dict)
# 按出现次数排序后的人名列表
name_list_sort = []
# 按出现次数排序后的人名百分比列表
name_list_fracs = []
# 按出现次数排序后的人名次数列表
name_list_count = []
for k,v in name_counter.most_common():
name_list_sort.append(k)
name_list_fracs.append(round(v/name_total_count,2)*100)
name_list_count.append(v)
# print(k+‘:‘+str(v))
# 绘制条形图
self.showNameBar(name_list_sort, name_list_count)
# 绘制饼状图
self.showNamePie(name_list_sort,name_list_fracs)

if __name__ == ‘__main__‘:
# 参与统计的人名列表,可修改成自己想要的列表
name_list = [‘宝玉‘, ‘黛玉‘, ‘宝钗‘, ‘元春‘, ‘探春‘, ‘湘云‘, ‘妙玉‘, ‘迎春‘, ‘惜春‘, ‘凤姐‘, ‘熙凤‘, ‘巧姐‘, ‘李纨‘, ‘可卿‘, ‘贾母‘, ‘贾珍‘, ‘贾蓉‘, ‘贾赦‘, ‘贾政‘, ‘王夫人‘, ‘贾琏‘, ‘薛蟠‘, ‘香菱‘, ‘宝琴‘, ‘袭人‘, ‘晴雯‘, ‘平儿‘, ‘紫鹃‘, ‘莺儿‘]
# 红楼梦txt文件所在路径,修改成自己文件所在路径
txt_path = ‘F:/PycharmProjects/tutorial/hlm.txt‘
hnc = HlmNameCount()
hnc.getNameTimesSort(name_list,txt_path)









































































以上是关于运用jieba分词分析红楼梦相关的分词,出现次数最高的20个的主要内容,如果未能解决你的问题,请参考以下文章

Python3红楼梦人名出现次数统计分析

jieba分词-红楼梦

jieba分词的原理

西游记相关的分词,出现次数最高的20个

自然语言处理课程:Jieba分词的原理及实例操作

中文词频统计