算法高精度大数相关问题总结
Posted trevo
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了算法高精度大数相关问题总结相关的知识,希望对你有一定的参考价值。
常考
大数乘法
题目链接:https://leetcode-cn.com/problems/multiply-strings/
class Solution {
public:
string multiply(string num1, string num2) {
string res(num1.size() + num2.size(), ‘0‘);
for(int i = num1.size() - 1; i >= 0; i--)
for(int j = num2.size() - 1; j >= 0; j--)
{
int val = (res[i + j + 1] - ‘0‘) + (num1[i] - ‘0‘) * (num2[j] - ‘0‘);
res[i + j + 1] = val % 10 + ‘0‘;
res[i + j] += val / 10;
}
for(int i = 0; i < res.size(); i++)
if(res[i] != ‘0‘) return res.substr(i);
return "0";
}
};
大数加法
题目链接:https://leetcode-cn.com/problems/add-strings/
class Solution {
public:
string addStrings(string num1, string num2) {
string res;
reverse(num1.begin(), num1.end());
reverse(num2.begin(), num2.end());
int val = 0;
for(int i = 0; i < num1.size() || i < num2.size(); i++)
{
if(i < num1.size()) val += num1[i] - ‘0‘;
if(i < num2.size()) val += num2[i] - ‘0‘;
res.push_back(val % 10 + ‘0‘);
val /= 10;
}
if(val) res.push_back(val + ‘0‘);
reverse(res.begin(), res.end());
return res;
}
};
大数减法
#include <iostream>
#include <string>
#include <vector>
using namespace std;
bool cmp(vector<int> &A, vector<int> &B)
{
if(A.size() != B.size()) return A.size() > B.size();
for(int i = A.size() - 1; i >= 0; i--)
if(A[i] != B[i])
return A[i] > B[i];
return true;
}
vector<int> sub_(vector<int> &A, vector<int> &B)
{
vector<int> C;
for(int i = 0, t = 0; i < A.size(); ++i)
{
t = A[i] - t;
if(i < B.size()) t -= B[i];
C.push_back((t + 10) % 10);
if(t < 0) t = 1;
else t = 0;
}
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a, b;
vector<int> A, B;
cin>>a>>b;
for(int i = a.size() - 1; i >= 0; --i) A.push_back(a[i] - ‘0‘);
for(int i = b.size() - 1; i >= 0; --i) B.push_back(b[i] - ‘0‘);
vector<int> C;
if(cmp(A, B)) C = sub_(A, B);
else C = sub_(B, A), printf("-");;
for(int i = C.size() - 1; i >= 0; --i) printf("%d", C[i]);
}
大数除法
#include <iostream>
#include <vector>
#include <string>
#include <algorithm>
using namespace std;
vector<int> div_(vector<int> &A, int b, int &r)
{
vector<int> C;
int t = 0;
for(int i = A.size() - 1; i >= 0; i--)
{
t = t * 10 + A[i];
C.push_back(t / b);
t %= b;;
}
r = t;
reverse(C.begin(), C.end());
while(C.size() > 1 && C.back() == 0) C.pop_back();
return C;
}
int main()
{
string a;
int b;
cin>>a>>b;
vector<int> A;
for(int i = a.size() - 1; i >= 0; --i) A.push_back(a[i] - ‘0‘);
int r = 0;
auto C = div_(A, b, r);
for(int i = C.size() - 1; i >= 0; --i) cout<<C[i];
cout<<endl;
cout<<r<<endl;
}
n的阶乘(考虑溢出)
#include <iostream>
#include <vector>
#include <string>
using namespace std;
vector<int> mul(vector<int> A, int b)
{
vector<int> C;
int t = 0;
for(int i = 0; i < A.size() || t; ++i)
{
if(i < A.size()) t += A[i] * b;
C.push_back(t % 10);
t /= 10;
}
return C;
}
int main()
{
int n;
cin >> n;
vector<int> A;
A.push_back(1);
for(int i = 1; i <= n; i++)
{
A = mul(A, i);
}
for(int i = A.size() - 1; i >= 0; i--) cout<<A[i];
cout<<endl;
}
以上是关于算法高精度大数相关问题总结的主要内容,如果未能解决你的问题,请参考以下文章