POJ2135 Farm Tour

Posted mogeko

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ2135 Farm Tour相关的知识,希望对你有一定的参考价值。

gate

用时:70min

题目大意:给定(N)个点,(M)条边的无向图,每条边只能走一次,求(1 ightarrow N ightarrow 1)的最短路径长度。

居然是费用流
建图:

  • 超级源点(s)和超级汇点(t)
  • (s ightarrow 1, N ightarrow t),容量为(2),费用为(0)
    即,相当于(1 ightarrow N)走两次。
  • 原图中的边,容量为(1),费用为长度;
    即,每条边只能走一次。

注意:双向边。

code

#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<queue>
#define MogeKo qwq
using namespace std;

const int maxn = 1e5+10;
const int INF = 0x3f3f3f3f;

int n,m,x,y,z,s,t,ans,cnt;
int head[maxn],to[maxn],nxt[maxn],w[maxn],co[maxn];
int fa[maxn],path[maxn],dis[maxn],fl[maxn];
bool vis[maxn];

void add(int x,int y,int W,int C){
	to[++cnt] = y;
	nxt[cnt] = head[x];
	head[x] = cnt;
	w[cnt] = W;
	co[cnt] = C;
}

void addedge(int x,int y,int W,int C){
	add(x,y,W,C);
	add(y,x,0,-C);
}

bool SPFA() {
	memset(dis,INF,sizeof(dis));
	memset(fl,INF,sizeof(fl));
	queue <int> q;
	dis[s] = 0;
	vis[s] = true;
	q.push(s);
	while(!q.empty()) {
		int u = q.front();
		q.pop();
		vis[u] = false;
		for(int i = head[u]; i; i = nxt[i]) {
			int v = to[i];
			if(dis[v] > dis[u] + co[i] && w[i]) {
				fa[v] = u;
				path[v] = i;
				dis[v] = dis[u] + co[i];
				fl[v] = min(fl[u],w[i]);
				if(!vis[v]) {
					vis[v] = true;
					q.push(v);
				}
			}
		}
	}
	return (dis[t] != INF);
}

void mcmf() {
	while(SPFA()) {
		for(int i = t; i != s; i = fa[i]) {
			int p = path[i];
			w[p] -= fl[t];
			w[p^1] += fl[t];
		}
		ans += fl[t]*dis[t];
	}
}

int main() {
	scanf("%d%d",&n,&m);
	s = 0, t = n+1, cnt = 1;
	addedge(s,1,2,0);
	addedge(n,t,2,0);
	for(int i = 1; i <= m; i++) {
		scanf("%d%d%d",&x,&y,&z);
		addedge(x,y,1,z);
		addedge(y,x,1,z);
	}
	mcmf();
	printf("%d",ans);
	return 0;
}



以上是关于POJ2135 Farm Tour的主要内容,如果未能解决你的问题,请参考以下文章

POJ2135:Farm Tour——题解

POJ 2135.Farm Tour 最小费用流

Farm Tour POJ - 2135 (最小费用流)

网络流(最小费用最大流):POJ 2135 Farm Tour

POJ2135 Farm Tour

POJ 2135.Farm Tour 消负圈法最小费用流