Paxos算法
Posted aspirant
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Paxos算法相关的知识,希望对你有一定的参考价值。
1、背景
Paxos算法是基于消息传递且具有高度容错特性的一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一,其解决的问题就是在分布式系统中如何就某个值(决议)达成一致。
在常见的分布式系统中,总会发生诸如机器宕机或网络异常(包括消息的延迟、丢失、重复、乱序,还有网络分区)(也就是会发生异常的分布式系统)等情况。Paxos算法需要解决的问题就是如何在一个可能发生上述异常的分布式系统中,快速且正确地在集群内部对某个数据的值达成一致。也可以理解成分布式系统中达成状态的一致性。
Paxos 算法是分布式一致性算法用来解决一个分布式系统如何就某个值(决议)达成一致的问题。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个”一致性算法”以保证每个节点看到的指令一致。
分布式系统中一般是通过多副本来保证可靠性,而多个副本之间会存在数据不一致的情况。所以必须有一个一致性算法来保证数据的一致,描述如下:
假如在分布式系统中初始是各个节点的数据是一致的,每个节点都顺序执行系列操作,然后每个节点最终的数据还是一致的。
Paxos算法就是解决这种分布式场景中的一致性问题。对于一般的开发人员来说,只需要知道paxos是一个分布式选举算法即可。多个节点之间存在两种通讯模型:共享内存(Shared memory)、消息传递(Messages passing),Paxos是基于消息传递的通讯模型的。
拜占庭问题
拜占庭将军问题(Byzantine failures),是由paxos的创始人莱斯利·兰伯特(2013年的图灵讲得主)在1982年提出的,用来为描述分布式系统一致性问题
故事大概是这么说的:
拜占庭帝国即中世纪的土耳其,拥有巨大的财富,周围10个邻邦垂诞已久,但拜占庭高墙耸立,固若金汤,没有一个单独的邻邦能够成功入侵。任何单个邻邦入侵的都会失败,同时也有可能自身被其他9个邻邦入侵。拜占庭帝国防御能力如此之强,至少要有十个邻邦中的6个同时进攻,才有可能攻破。然而,如果其中的一个或者几个邻邦本身答应好一起进攻,但实际过程出现背叛,那么入侵者可能都会被歼灭。于是每一方都小心行事,不敢轻易相信邻国。这就是拜占庭将军问题。
其实,在拜占庭问题里,各邻国最重要的事情是:所有国家如何能过达成共识去攻打拜占庭帝国,问题是这些将军在地理上是分隔开来的,只能依靠通讯员进行传递命令,但是通讯员中存在叛徒,它们可以篡改消息,叛徒可以欺骗某些将军采取进攻行动;促成一个不是所有将军都同意的决定,如当将军们不希望进攻时促成进攻行动;或者迷惑某些将军,使他们无法做出决定。
在分布式系统领域, 拜占庭将军问题中的角色与计算机世界的对应关系如下:
(a)将军, 对应计算机节点;
(b)忠诚的将军, 对应运行良好的计算机节点;
(c)叛变的将军, 被非法控制的计算机节点;
(d)信使被杀, 通信故障使得消息丢失;
(e)信使被间谍替换, 通信被攻击, 攻击者篡改或伪造信息。
如上文所述,拜占庭将军问题提供了对分布式共识问题的一种情景化描述,是分布式系统领域最复杂的模型。此外, 它也为我们理解和分类现有的众多分布式一致性协议和算法提供了框架。现有的分布式一致性协议和算法主要可分为两类:
一类是故障容错算法(Crash Fault Tolerance, CFT), 即非拜占庭容错算法,解决的是分布式系统中存在故障,但不存在恶意攻击的场景下的共识问题。也就是说,在该场景下可能存在消息丢失,消息重复,但不存在消息被篡改或伪造的场景。一般用于局域网场景下的分布式系统,如分布式数据库。属于此类的常见算法有Paxos算法、Raft算法,、ZAB协议等。
一类是拜占庭容错算法,可以解决分布式系统中既存在故障,又存在恶意攻击场景下的共识问题。一般用于互联网场景下的分布式系统,如在数字货币的区块链技术中。属于此类的常见算法有PBFT算法、PoW算法。
二、CAP理论
在一个分布式系统中,由于节点故障、网络延迟等各种原因,根据CAP理论,我们只能保证一致性(Consistency)、可用性(Availability)、分区容错性(Partition Tolerance)中的两个。
关于分布式系统有一个经典的CAP理论,
CAP理论的核心思想是任何基于网络的数据共享系统最多只能满足数据一致性(Consistency)、可用性(Availability)和网络分区容忍(Partition Tolerance)三个特性中的两个。
-
Consistency 一致性
一致性指“all nodes see the same data at the same time”,即更新操作成功并返回客户端完成后,所有节点在同一时间的数据完全一致。等同于所有节点拥有数据的最新版本。 -
Availability 可用性
可用性指“Reads and writes always succeed”,即服务一直可用,而且是正常响应时间。
对于一个可用性的分布式系统,每一个非故障的节点必须对每一个请求作出响应。也就是,该系统使用的任何算法必须最终终止。当同时要求分区容忍性时,这是一个很强的定义:即使是严重的网络错误,每个请求必须终止。
- Partition Tolerance 分区容忍性
Tolerance也可以翻译为容错,分区容忍性具体指“the system continues to operate despite arbitrary message loss or failure of part of the system”,即系统容忍网络出现分区,分区之间网络不可达的情况,分区容忍性和扩展性紧密相关,Partition Tolerance特指在遇到某节点或网络分区故障的时候,仍然能够对外提供满足一致性和可用性的服务。
提高分区容忍性的办法就是一个数据项复制到多个节点上,那么出现分区之后,这一数据项就可能分布到各个区里。分区容忍就提高了。然而,要把数据复制到多个节点,就会带来一致性的问题,就是多个节点上面的数据可能是不一致的。要保证一致,每次写操作就都要等待全部节点写成功,而这等待又会带来可用性的问题。
可以看到,在分布式系统中,同时满足CAP定律中“一致性”、“可用性”和“分区容错性”三者是不可能的。
在通常的分布式系统中,为了保证数据的高可用,通常会将数据保留多个副本(replica),网络分区是既成的现实,于是只能在可用性和一致性两者间做出选择。CAP理论关注的是绝对情况下,在工程上,可用性和一致性并不是完全对立,我们关注的往往是如何在保持相对一致性的前提下,提高系统的可用性。
如下图所示,一致性问题,可以根据是否存在恶意节点分类两类。
无恶意节点,是指节点会丢失、重发、不响应消息,但不会篡改消息。而恶意节点可能会篡改消息。
有恶意节点的问题称为拜占庭将军问题,不在今天的讨论范围。Paxos很好地解决了无恶意节点的分布式一致性问题。
三、数据一致性模型
在互联网领域的绝大多数的场景,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。
对于一致性,可以分为从服务端和客户端两个不同的视角,即内部一致性和外部一致性。
没有全局时钟,绝对的内部一致性是没有意义的,一般来说,我们讨论的一致性都是外部一致性。外部一致性主要指的是多并发访问时更新过的数据如何获取的问题。
强一致性:
当更新操作完成之后,任何多个后续进程或者线程的访问都会返回最新的更新过的值。这种是对用户最友好的,就是用户上一次写什么,下一次就保证能读到什么。根据 CAP 理论,这种实现需要牺牲可用性。
弱一致性:
系统并不保证续进程或者线程的访问都会返回最新的更新过的值。用户读到某一操作对系统特定数据的更新需要一段时间,我们称这段时间为“不一致性窗口”。系统在数据写入成功之后,不承诺立即可以读到最新写入的值,也不会具体的承诺多久之后可以读到。
最终一致性:
是弱一致性的一种特例。系统保证在没有后续更新的前提下,系统最终返回上一次更新操作的值。在没有故障发生的前提下,不一致窗口的时间主要受通信延迟,系统负载和复制副本的个数影响。
最终一致性模型根据其提供的不同保证可以划分为更多的模型,包括因果一致性和读自写一致性等。
四、Paxos算法的提出
二阶段提交还是三阶段提交都无法很好的解决分布式的一致性问题,直到Paxos算法的提出,Paxos协议由Leslie Lamport最早在1990年提出,目前已经成为应用最广的分布式一致性算法。
Google Chubby的作者Mike Burrows说过这个世界上只有一种一致性算法,那就是Paxos,其它的算法都是残次品。
Paxos算法的前提假设是不存在拜占庭将军问题,即:信道是安全的(信道可靠),发出的信号不会被篡改,因为Paxos算法是基于消息传递的。此问题由Lamport提出,它也是 Paxos算法的提出者。
从理论上来说,在分布式计算领域,试图在异步系统和不可靠信道上来达到一致性状态是不可能的。因此在对一致性的研究过程中,都往往假设信道是可靠的,而事实上,大多数系统都是部署在一个局域网中,因此消息被篡改的情况很罕见;另一方面,由于硬件和网络原因而造成的消息不完整问题,只需要一套简单的校验算法即可。因此,在实际工程中,可以假设所有的消息都是完整的,也就是没有被篡改。
Paxos算法的相关概念
1.节点角色
在Paxos算法中,有三种角色:
(a) Proposer
(b) Acceptor
(C) Learners
Paxos 协议中,有三类节点:
- Proposer:提案者
Proposer 可以有多个,Proposer 提出议案(value)。所谓 value,在工程中可以是任何操作,例如“修改某个变量的值为某个值”、“设置当前 primary 为某个节点”等等。Paxos 协议中统一将这些操作抽象为 value。
不同的 Proposer 可以提出不同的value,同一轮 Paxos 过程,最多只有一个 value 被批准。
- Acceptor:批准者
Acceptor 有 N 个,Proposer 提出的 value 必须获得超过半数(N/2+1)的
Acceptor 批准后才能通过。Acceptor 之间完全对等独立。
- Learner:学习者
Learner 学习被批准的 value。所谓学习就是通过读取各个 Proposer 对 value 的选择结果,如果某个 value 被超过半数 Proposer 通过,则 Learner 学习到了这个 value。
这里类似 Quorum 议会机制,某个 value 需要获得 W=N/2 + 1 的 Acceptor 批准,Learner 需要至少读取 N/2+1 个 Accpetor,至多读取 N 个 Acceptor 的结果后,能学习到一个通过的 value。
2.约束条件
上述三类角色只是逻辑上的划分,实践中一个节点可以同时充当这三类角色。
Paxos中 proposer 和 acceptor 是算法的核心角色,paxos 描述的就是在一个由多个 proposer 和多个 acceptor 构成的系统中,如何让多个 acceptor 针对 proposer 提出的多种提案达成一致的过程,而 learner 只是“学习”最终被批准的提案。
Paxos协议流程还需要满足几个约束条件:
- Acceptor必须接受它收到的第一个提案;
- 如果一个提案的v值被大多数Acceptor接受过,那后续的所有被接受的提案中也必须包含v值(v值可以理解为提案的内容,提案由一个或多个v和提案编号组成);
- 如果某一轮 Paxos 协议批准了某个 value,则以后各轮 Paxos 只能批准这个value;
每轮 Paxos 协议分为准备阶段和批准阶段,在这两个阶段 Proposer 和 Acceptor 有各自的处理流程。
Proposer与Acceptor之间的交互主要有4类消息通信,如下图:
这4类消息对应于paxos算法的两个阶段4个过程:
- Phase 1 a) proposer向网络内超过半数的acceptor发送prepare消息 b) acceptor正常情况下回复promise消息
- Phase 2 a) 在有足够多acceptor回复promise消息时,proposer发送accept消息 b) 正常情况下acceptor回复accepted消息
3.选举过程
- Phase 1 准备阶段
Proposer 生成全局唯一且递增的ProposalID,向 Paxos 集群的所有机器发送 Prepare请求,这里不携带value,只携带N即ProposalID 。
Acceptor 收到 Prepare请求 后,判断:收到的ProposalID 是否比之前已响应的所有提案的N大:
如果是,则:
(1) 在本地持久化 N,可记为Max_N。
(2) 回复请求,并带上已Accept的提案中N最大的value(若此时还没有已Accept的提案,则返回value为空)。
(3) 做出承诺:不会Accept任何小于Max_N的提案。
如果否:不回复或者回复Error。
- Phase 2 选举阶段
P2a:Proposer 发送 Accept
经过一段时间后,Proposer 收集到一些 Prepare 回复,有下列几种情况:
(1) 回复数量 > 一半的Acceptor数量,且所有的回复的value都为空,则Porposer发出accept请求,并带上自己指定的value。
(2) 回复数量 > 一半的Acceptor数量,且有的回复value不为空,则Porposer发出accept请求,并带上回复中ProposalID最大的value(作为自己的提案内容)。
(3) 回复数量 <= 一半的Acceptor数量,则尝试更新生成更大的ProposalID,再转P1a执行。
P2b:Acceptor 应答 Accept
Accpetor 收到 Accpet请求 后,判断:
(1) 收到的N >= Max_N (一般情况下是 等于),则回复提交成功,并持久化N和value。
(2) 收到的N < Max_N,则不回复或者回复提交失败。
P2c: Proposer 统计投票
经过一段时间后,Proposer 收集到一些 Accept 回复提交成功,有几种情况:
(1) 回复数量 > 一半的Acceptor数量,则表示提交value成功。此时,可以发一个广播给所有Proposer、Learner,通知它们已commit的value。
(2) 回复数量 <= 一半的Acceptor数量,则 尝试 更新生成更大的 ProposalID,再转P1a执行。
(3) 收到一条提交失败的回复,则尝试更新生成更大的 ProposalID,再转P1a执行。
4.相关讨论
Paxos算法的核心思想:
(1)引入了多个Acceptor,单个Acceptor就类似2PC中协调者的单点问题,避免故障
(2)Proposer用更大ProposalID来抢占临时的访问权,可以对比2PC协议,防止其中一个Proposer崩溃宕机产生阻塞问题
(3)保证一个N值,只有一个Proposer能进行到第二阶段运行,Proposer按照ProposalID递增的顺序依次运行
(3) 新ProposalID的proposer比如认同前面提交的Value值,递增的ProposalID的Value是一个继承关系
为什么在Paxos运行过程中,半数以内的Acceptor失效都能运行?
(1) 如果半数以内的Acceptor失效时 还没确定最终的value,此时,所有Proposer会竞争 提案的权限,最终会有一个提案会 成功提交。之后,会有半过数的Acceptor以这个value提交成功。
(2) 如果半数以内的Acceptor失效时 已确定最终的value,此时,所有Proposer提交前 必须以 最终的value 提交,此值也可以被获取,并不再修改。
如何产生唯一的编号呢?
在《Paxos made simple》中提到的是让所有的Proposer都从不相交的数据集合中进行选择,例如系统有5个Proposer,则可为每一个Proposer分配一个标识j(0~4),则每一个proposer每次提出决议的编号可以为5*i + j(i可以用来表示提出议案的次数)。
推荐larmport和paxos相关的三篇论文:
The Part-Time Parliament
Paxos made simple
Fast Paxos
2PC/3PC和Paxos协议是经典的分布式协议,理解了它们以后,学习其他分布式协议会简单很多。
以上是关于Paxos算法的主要内容,如果未能解决你的问题,请参考以下文章