Spark 源码解读SparkContext的初始化之创建和启动DAGScheduler
Posted xinjitu-001
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Spark 源码解读SparkContext的初始化之创建和启动DAGScheduler相关的知识,希望对你有一定的参考价值。
Spark 源码解读(五)SparkContext的初始化之创建和启动DAGScheduler
DAGScheduler主要用于在任务正式提交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建job,将DAG中的RDD划分到不同的Stage,提交Stage等等。SparkContext中创建DAGScheduler的代码如下所示:
_dagScheduler = new DAGScheduler(this)
在DAGScheduler维护了jobId和StageId的关系,Stage,ActiveJob以及缓存的RDD的partition的位置信息。
代码如下:
private[scheduler] val nextJobId = new AtomicInteger(0)
private[scheduler] def numTotalJobs: Int = nextJobId.get()
private val nextStageId = new AtomicInteger(0)
private[scheduler] val jobIdToStageIds = new HashMap[Int, HashSet[Int]]
private[scheduler] val stageIdToStage = new HashMap[Int, Stage]
/**
* Mapping from shuffle dependency ID to the ShuffleMapStage that will generate the data for
* that dependency. Only includes stages that are part of currently running job (when the job(s)
* that require the shuffle stage complete, the mapping will be removed, and the only record of
* the shuffle data will be in the MapOutputTracker).
*/
private[scheduler] val shuffleIdToMapStage = new HashMap[Int, ShuffleMapStage]
private[scheduler] val jobIdToActiveJob = new HashMap[Int, ActiveJob]
// Stages we need to run whose parents aren‘t done
private[scheduler] val waitingStages = new HashSet[Stage]
// Stages we are running right now
private[scheduler] val runningStages = new HashSet[Stage]
// Stages that must be resubmitted due to fetch failures
private[scheduler] val failedStages = new HashSet[Stage]
private[scheduler] val activeJobs = new HashSet[ActiveJob]
/**
* Contains the locations that each RDD‘s partitions are cached on. This map‘s keys are RDD ids
* and its values are arrays indexed by partition numbers. Each array value is the set of
* locations where that RDD partition is cached.
*
* All accesses to this map should be guarded by synchronizing on it (see SPARK-4454).
*/
private val cacheLocs = new HashMap[Int, IndexedSeq[Seq[TaskLocation]]]
// For tracking failed nodes, we use the MapOutputTracker‘s epoch number, which is sent with
// every task. When we detect a node failing, we note the current epoch number and failed
// executor, increment it for new tasks, and use this to ignore stray ShuffleMapTask results.
//
// TODO: Garbage collect information about failure epochs when we know there are no more
// stray messages to detect.
private val failedEpoch = new HashMap[String, Long]
private [scheduler] val outputCommitCoordinator = env.outputCommitCoordinator
// A closure serializer that we reuse.
// This is only safe because DAGScheduler runs in a single thread.
private val closureSerializer = SparkEnv.get.closureSerializer.newInstance()
后续完善。。。。
以上是关于Spark 源码解读SparkContext的初始化之创建和启动DAGScheduler的主要内容,如果未能解决你的问题,请参考以下文章
Spark 源码解读SparkContext的初始化之创建和启动DAGScheduler
Spark 源码解读SparkContext的初始化之创建任务调度器TaskScheduler