生成器详解
Posted featherwit
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了生成器详解相关的知识,希望对你有一定的参考价值。
我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。
生成器与yield
若函数体包含yield关键字,再调用函数,并不会执行函数体代码,得到的返回值即生成器对象
def my_range(start,stop,step=1): print(‘start...‘) while start < stop: yield start start+=step print(‘end...‘) g=my_range(0,3) print(g) <generator object my_range at 0x104105678>
生成器内置有__iter__和__next__方法,所以生成器本身就是一个迭代器
>>> g.__iter__ <method-wrapper ‘__iter__‘ of generator object at 0x1037d2af0> >>> g.__next__ <method-wrapper ‘__next__‘ of generator object at 0x1037d2af0>
因而我们可以用next(生成器)触发生成器所对应函数的执行,
>>> next(g) # 触发函数执行直到遇到yield则停止,将yield后的值返回,并在当前位置挂起函数 start... 0 >>> next(g) # 再次调用next(g),函数从上次暂停的位置继续执行,直到重新遇到yield... 1 >>> next(g) # 周而复始... 2 >>> next(g) # 触发函数执行没有遇到yield则无值返回,即取值完毕抛出异常结束迭代 end... Traceback (most recent call last): File "<stdin>", line 1, in <module> StopIteration
既然生成器对象属于迭代器,那么必然可以使用for循环迭代,如下:
>>> for i in countdown(3): ... print(i) ... countdown start 3 2 1 Done!
有了yield关键字,我们就有了一种自定义迭代器的实现方式。yield可以用于返回值,但不同于return,函数一旦遇到return就结束了,而yield可以保存函数的运行状态挂起函数,用来返回多次值
yield表达式应用
在函数内可以采用表达式形式的yield
def eater(): print(‘Ready to eat‘) while True: food=yield print(‘get the food: %s, and start to eat‘ %food)
可以拿到函数的生成器对象持续为函数体send值,如下
>>> g=eater() # 得到生成器对象 >>> g <generator object eater at 0x101b6e2b0> >>> next(e) # 需要事先”初始化”一次,让函数挂起在food=yield,等待调用g.send()方法为其传值 Ready to eat >>> g.send(‘包子‘) get the food: 包子, and start to eat >>> g.send(‘鸡腿‘) get the food: 鸡腿, and start to eat
针对表达式形式的yield,生成器对象必须事先被初始化一次,让函数挂起在food=yield的位置,等待调用g.send()方法为函数体传值,g.send(None)等同于next(g)。
我们可以编写装饰器来完成为所有表达式形式yield对应生成器的初始化操作,如下
def init(func): def wrapper(*args,**kwargs): g=func(*args,**kwargs) next(g) return g return wrapper @init def eater(): print(‘Ready to eat‘) while True: food=yield print(‘get the food: %s, and start to eat‘ %food)
表达式形式的yield也可以用于返回多次值,即变量名=yield 值
的形式,如下
>>> def eater(): ... print(‘Ready to eat‘) ... food_list=[] ... while True: ... food=yield food_list ... food_list.append(food) ... >>> e=eater() >>> next(e) Ready to eat [] >>> e.send(‘蒸羊羔‘) [‘蒸羊羔‘] >>> e.send(‘蒸熊掌‘) [‘蒸羊羔‘, ‘蒸熊掌‘] >>> e.send(‘蒸鹿尾儿‘) [‘蒸羊羔‘, ‘蒸熊掌‘, ‘蒸鹿尾儿‘]
三元表达式、列表生成式、生成器表达式
三元表达式
三元表达式是python为我们提供的一种简化代码的解决方案,语法如下:
res = 条件成立时返回的值 if 条件 else 条件不成立时返回的值
例如:
res = x if x > y else y
列表生成式
列表生成式是python为我们提供的一种简化代码的解决方案,用来快速生成列表,语法如下
[expression for item1 in iterable1 if condition1 for item2 in iterable2 if condition2 ... for itemN in iterableN if conditionN ]
例如:
egg_list=[‘鸡蛋%s‘ %i for i in range(10)]
生成器表达式
创建一个生成器对象有两种方式,一种是调用带yield关键字的函数,另一种就是生成器表达式,与列表生成式的语法格式相同,只需要将[]换成(),即:
(expression for item in iterable if condition)
例如:
>>> g=(x*x for x in range(3)) >>> g <generator object <genexpr> at 0x101be0ba0>
对比列表生成式,生成器表达式的优点自然是节省内存(一次只产生一个值在内存中)
如果我们要读取一个大文件的字节数,应该基于生成器表达式的方式完成
with open(‘db.txt‘,‘rb‘) as f: nums=(len(line) for line in f) total_size=sum(nums) # 依次执行next(nums),然后累加到一起得到结果
以上是关于生成器详解的主要内容,如果未能解决你的问题,请参考以下文章