从零开始认识堆排序

Posted niejunlei

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了从零开始认识堆排序相关的知识,希望对你有一定的参考价值。

一、什么是堆?

维基百科的解释是:堆是一种特别的树状数据结构,它需要满足任意的子节点必须都大于等于(最大堆)或者小于等于(最小堆)其父节点。

二、堆排序

堆排序是通过二叉堆数据结构实现,二叉堆满足一下两个特性:

1、满足对的基本特性

2、完全二叉树,除了最底层外,其它层都已填充满,且是从左到右填充。

二叉堆的高度即为根节点到叶子节点的最长简单路径长度,即为θ(lgn)。

二叉堆上的操作时间复杂度为O(lgn)。

1、二叉堆中的元素个数

根据二叉堆的特性2,我们知道高度为h的二叉堆重元素个数如下:

根节点为1

第一层为2=21

第二层为4=22

...

第h-1层为2h-1

第h层元素个数范围为[1,2h]

最底层之外的元素个数和为1+2+22+...+2h-1=(1-2h-1)/(1-2)=2h-1

高度为h的二叉堆元素个数范围:[2h-1 + 1,2h-1+2h]=[2h,2h+1-1]

以高度为3的最大堆为例:

技术图片

图1

技术图片

 图2

2、二叉堆的高度

由二.1推导,我们知道高度为h的二叉堆的元素个数n满足:

2≦ n ≦ 2h+1-1

=>

2≦ 2lgn ≦ 2h+1-1

=>

h ≦ lgn < h+1

由此可得,含有n个元素的二叉堆的高度为θ(lgn)

3、使用数组表示堆存储

节点下标 i,则父节点下标为 i/2,左子节点下标为 2i,右子节点下标 2i + 1。

以图1最大堆为例:

从根节点开始,根节点下标 1。

第一层节点下标:2、3

第二层节点下标:4、5、6、7

第三层节点下标:8

技术图片

图3

数组形式:

技术图片

 图4

具体到特定的编程语言,数组以0开始下标的,推导:

对于节点 i,则其父节点为 (i - 1)/2,左子节点下标为 2i + 1,右子节点下标 2i + 2。

4、堆的叶子节点

对于有n个元素的二叉堆,最后一个元素的下标为为n,根据二叉堆的性质,其父节点下标为n/2,因为每一层是由左向右进行构建,所以其父节点也是倒数第二层的最后一个节点,所以,其后的节点都为最底层节点,为叶子节点,下标为n/2 + 1、n/2 + 2... n。

具体到特定的编程语言,数组以0开始下标的,推到:

叶子节点下标为(n-1)/2 + 1、(n-1)/2 + 2... n。

5、堆维护

所谓堆维护,即保持堆的基本特性,以最大堆为例:给定某个节点,维护使得以其为根节点的子堆为满足子节点都小于等于父节点。

如下,给定堆构建数组,及特定元素下标i:

public static void maxHeapify(int[] arr, int i) {
        int size = arr.length; //堆大小
        int maxIndex = i; //记录当前节点及其子节点的最大值节点索引
        int left = 2 * i + 1; //左子节点索引
        int right = 2 * i + 2; //右子节点索引

        //对比节点及其左子节点
        if (left < size && arr[left] > arr[maxIndex]) {
            maxIndex = left;
        }

        //对比节点及其右子节点
        if (right < size && arr[right] > arr[maxIndex]) {
            maxIndex = right;
        }

        //不满足最大堆性质,则进行下沉节点i,递归处理
        if (maxIndex != i) {
            int tmp = arr[i];
            arr[i] = arr[maxIndex];
            arr[maxIndex] = tmp;
            maxHeapify(arr, maxIndex);
        }
    }

如下图,堆中元素9的维护过程:

技术图片技术图片技术图片 

 图5

堆维护过程的时间复杂度:O(lgn)。

6、构建堆

根据二.4我们可以得到所有叶子节点的下标。我们可以使用二.5中的堆维护过程,对所堆中所有的非叶子节点执行堆维护操作进行堆的构建。

public static void buildHeap(int[] arr) {
        for (int i = (arr.length - 1) / 2; i >= 0; i--) {
            maxHeapify(arr, i);
        }
    }

以数组 {27,17,3,16,13,10,1,5,7,12,4,8,9,0} 为例进行堆构建,结果为:{27,17,10,16,13,9,1,5,7,12,4,8,3,0}

技术图片

图6

构建最大堆的时间复杂度为O(n)。

7、堆排序

首先执行最大堆构建,当前堆中最大值会上升到根节点,也就是堆数组的首节点。

我们可以通过交换首尾节点,使得最大值转移至尾部,然后对除尾部元素外的堆数组执行根元素堆维护,上浮堆最大值。

然后,将最大值交换至数组尾部倒数第二个元素位置,重新执行剩余堆数组的根元素堆维护,依次类推,直至剩余堆数组大小变为2为止。

以二.6中数组为例:{27,17,3,16,13,10,1,5,7,12,4,8,9,0}

第一次执行:

{27,17,10,16,13,9,1,5,7,12,4,8,3,0},max:27

第二次执行:

{17,16,10,7,13,9,1,5,0,12,4,8,3},max:17

第三词执行:

{16,13,10,7,12,9,1,5,0,3,4,8},max:16

第四次执行:

{13,12,10,7,8,9,1,5,0,3,4},max:13

第五次执行:

{12,8,10,7,4,9,1,5,0,3},max:12

第六次执行:

{10,8,9,7,4,3,1,5,0},max:10

第七次执行:

{9,8,3,7,4,0,1,5},max:9

第八次执行:

{8,7,3,5,4,0,1},max:8

第九次执行:

{7,5,3,1,4,0},max:7

第十次执行:

{5,4,3,1,0},max:5

第十一次执行:

{4,1,3,0},max:4

第十二次执行:

{3,1,0},max:3

第十三次执行:

{1,0},max:1

堆排序时间复杂度:O(nlgn)

 

以上是关于从零开始认识堆排序的主要内容,如果未能解决你的问题,请参考以下文章

从零开始配置vim(27)——代码片段

从零开始配置vim(27)——代码片段

从零开始配置vim(27)——代码片段

认识堆和堆排序

认识堆和堆排序

从零开始学Java编程!java集合类详解和使用